Searching....

# 6.12.2 VOD and VOD(2) Methods

(February 4, 2022)

The VOD method is the active space version of the OD method described earlier in Section 6.10.5. Both energies and gradients are available for VOD, so structure optimization is possible. There are a few important comments to make about the usefulness of VOD. First, it is a method that is capable of accurately treating problems that fundamentally involve 2 active electrons in a given local region of the molecule. It is therefore a good alternative for describing single bond-breaking, or torsion around a double bond, or some classes of diradicals. However it often performs poorly for problems where there is more than one bond being broken in a local region, with the non variational solutions being quite possible. For such problems the newer VQCCD method is substantially more reliable.

Assuming that VOD is a valid zero order description for the electronic structure, then a second-order correction, VOD(2), is available for energies only. VOD(2) is a version of OD(2) generalized to valence active spaces. It permits more accurate calculations of relative energies by accounting for dynamical correlation.

Example 6.33  Calculate the correlation energy of the water molecule with partially stretched bonds, the VOD coupled-cluster active space method. This is a relatively “easy” job to converge, and may be contrasted with the next example, which is not easy to converge. The orbitals are restricted.

$molecule 0 1 O H 1 r H 1 r 2 a r = 1.5 a = 104.5$end

$rem METHOD vod BASIS 6-31G$end


View output

Example 6.34  The water molecule with highly stretched bonds, calculated via the VOD coupled-cluster active space method. This is a “difficult” job to converge. The convergence options shown permitted the job to converge after some experimentation (thanks due to Ed Byrd for this!). The difficulty of converging this job should be contrasted with the previous example where the bonds were less stretched.

$molecule 0 1 O H 1 r H 1 r 2 a r = 3.0 a = 104.5$end

$rem METHOD vod BASIS 6-31G SCF_CONVERGENCE 9 THRESH 12 CC_PRECONV_T2Z 50 CC_PRECONV_T2Z_EACH 50 CC_DOV_THRESH 7500 CC_THETA_STEPSIZE 3200 CC_DIIS_START 75$end


View output