5.3 Overview of Available Functionals

5.3.3 Correlation Functionals

(June 30, 2021)

Note:  All correlation functionals in this section can be invoked using the $rem variable CORRELATION. Popular and/or recommended functionals within each class are listed first and indicated in bold. The rest are in alphabetical order.

  • Local Spin-Density Approximation (LSDA)

    • PW92: Perdew-Wang parameterization of the LSDA correlation energy from 1992 850 Perdew J. P., Wang Y.
      Phys. Rev. B
      (1992), 45, pp. 13244.
      Link

    • VWN5 (VWN): Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #5 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • srVWN: Short-range version of the VWN correlation functional by Toulouse and coworkers 1096 Toulouse J., Savin A., Flad H.-J.
      Int. J. Quantum Chem.
      (2004), 100, pp. 1047.
      Link

    • Liu-Parr: Liu-Parr ρ1/3 model from the functional expansion formulation 688 Liu S., Parr R. G.
      J. Mol. Struct. (Theochem)
      (2000), 501, pp. 29.
      Link

    • PK09: Proynov-Kong parameterization of the LSDA correlation energy from 2009 898 Proynov E., Kong J.
      Phys. Rev. A
      (2009), 79, pp. 014103.
      Link

    • PW92RPA: Perdew-Wang parameterization of the LSDA correlation energy from 1992 with RPA values 850 Perdew J. P., Wang Y.
      Phys. Rev. B
      (1992), 45, pp. 13244.
      Link

    • srPW92: Short-range version of the PW92 correlation functional by Paziani and coworkers 836 Paziani S. et al.
      Phys. Rev. B
      (2006), 73, pp. 155111.
      Link

    • PZ81: Perdew-Zunger parameterization of the LSDA correlation energy from 1981 851 Perdew J. P., Zunger A.
      Phys. Rev. B
      (1981), 23, pp. 5048.
      Link

    • VWN1: Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #1 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • VWN1RPA: Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #1 with RPA values 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • VWN2: Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #2 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • VWN3: Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #3 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • VWN4: Vosko-Wilk-Nusair parameterization of the LSDA correlation energy #4 1134 Vosko S. H., Wilk L., Nusair M.
      Can. J. Phys.
      (1980), 58, pp. 1200.
      Link

    • Wigner:Wigner correlation functional (simplification of LYP) 1180 Wigner E. P.
      Trans. Faraday Soc.
      (1938), 34, pp. 678.
      Link
      , 1051 Stewart P. A., Gill P. M. W.
      J. Chem. Soc. Faraday Trans.
      (1995), 91, pp. 4337.
      Link

  • Generalized Gradient Approximation (GGA)

    • PBE: Perdew, Burke, and Ernzerhof correlation functional 839 Perdew J. P., Burke K., Ernzerhof M.
      Phys. Rev. Lett.
      (1996), 77, pp. 3865.
      Link

    • LYP: Lee-Yang-Parr opposite-spin correlation functional 630 Lee C., Yang W., Parr R. G.
      Phys. Rev. B
      (1988), 37, pp. 785.
      Link

    • P86: Perdew-Wang correlation functional from 1986 based on the PZ81 LSDA functional 852 Perdew J. P.
      Phys. Rev. B
      (1986), 33, pp. 8822.
      Link

    • P86VWN5: Perdew-Wang correlation functional from 1986 based on the VWN5 LSDA functional 852 Perdew J. P.
      Phys. Rev. B
      (1986), 33, pp. 8822.
      Link

    • PBEloc: PBE correlation functional with a modified beta term by Della Sala and coworkers

    • PBEsol: PBE correlation functional modified for solids 844 Perdew J. P. et al.
      Phys. Rev. Lett.
      (2008), 100, pp. 136406.
      Link

    • srPBE: Short-range version of the PBE correlation functional by Goll and coworkers 374 Goll E., Werner H.-J., Stoll H.
      Phys. Chem. Chem. Phys.
      (2005), 7, pp. 3917.
      Link
      , 373 Goll E. et al.
      Chem. Phys.
      (2006), 329, pp. 276.
      Link

    • PW91: Perdew-Wang correlation functional from 1991 840 Perdew J. P. et al.
      Phys. Rev. B
      (1992), 46, pp. 6671.
      Link

    • regTPSS: Slight modification of the PBE correlation functional (also called vPBEc) 953 Ruzsinszky A. et al.
      J. Chem. Theory Comput.
      (2012), 8, pp. 2078.
      Link

  • Meta-Generalized Gradient Approximation (meta-GGA)

    • TPSS:Tao, Perdew, Staroverov, and Scuseria correlation functional 1080 Tao J. et al.
      Phys. Rev. Lett.
      (2003), 91, pp. 146401.
      Link

    • revTPSS: Revised version of the TPSS correlation functional 843 Perdew J. P. et al.
      Phys. Rev. Lett.
      (2009), 103, pp. 026403.
      Link

    • B95: Becke’s two-parameter correlation functional from 1995 78 Becke A. D.
      J. Chem. Phys.
      (1996), 104, pp. 1040.
      Link

    • oTPSS: TPSS correlation functional with 2 refit parameters (for use with oTPSS exchange) by Grimme and coworkers 369 Goerigk L., Grimme S.
      J. Chem. Theory Comput.
      (2010), 6, pp. 107.
      Link

    • PK06: Proynov-Kong “tLap” functional with τ and Laplacian dependence 896 Proynov E., Kong J.
      J. Chem. Theory Comput.
      (2007), 3, pp. 746.
      Link

    • PKZB: Perdew, Kurth, Zupan, and Blaha correlation functional 841 Perdew J. P. et al.
      Phys. Rev. Lett.
      (1999), 82, pp. 2544.
      Link

    • SCAN: Strongly Constrained and Appropriately Normed correlation functional 1066 Sun J., Ruzsinszky A., Perdew J. P.
      Phys. Rev. Lett.
      (2015), 115, pp. 036402.
      Link

    • TM: Tao-Mo correlation functional, representing a minor modification to the TPSS correlation functional 1079 Tao J., Mo Y.
      Phys. Rev. Lett.
      (2016), 117, pp. 073001.
      Link

    • TPSSloc: The TPSS correlation functional with the PBE component replaced by the PBEloc correlation functional