Searching....

# 13.2.6 Format for the $intracule Section (February 4, 2022)  int_type 0 Compute $P(u)$ only 1 Compute $M(v)$ only 2 Compute $W(u,v)$ only 3 Compute $P(u)$, $M(v)$ and $W(u,v)$ 4 Compute $P(u)$ and $M(v)$ 5 Compute $P(u)$ and $W(u,v)$ 6 Compute $M(v)$ and $W(u,v)$ u_points Number of points, start, end. v_points Number of points, start, end. moments 0–4 Order of moments to be computed ($P(u)$ only). derivs 0–4 order of derivatives to be computed ($P(u)$ only). accuracy $n$ ($10^{-n})$ specify accuracy of intracule interpolation table ($P(u)$ only). Example 13.1 Compute HF/STO-3G $P(u)$, $M(v)$ and $W(u,v)$ for Ne, using Lebedev quadrature with 974 point grid. $molecule
0  1
Ne
$end$rem
METHOD      hf
BASIS       sto-3g
INTRACULE   true
WIG_LEB     true
WIG_GRID    974
$end$intracule
int_type   3
u_points  10   0.0  10.0
v_points   8   0.0   8.0
moments    4
derivs     4
accuracy   8
$end  View output Example 13.2 Compute HF/6-31G $W(u,v)$ intracules for H${}_{2}$O using series summation up to $n$=25 and 30 terms in the series evaluations of $j_{n}(x)$ and $i_{n}(x)$. $comment
Note only a few points are calculated in this sample
$end$molecule
0  1
H1
O   H1  r
H2  O   r  H1  theta

r = 1.1
theta = 106
$end$rem
METHOD         hf
BASIS          6-31G
INTRACULE      true
WIG_MEM        true
N_WIG_SERIES   25
N_I_SERIES     40
N_J_SERIES     50
$end$intracule
int_type   2
u_points   2   0.0   15.0
v_points   2   0.0   10.0
\$end


View output