X

Search Results

Searching....

13.5 Nuclear–Electronic Orbital Method

13.5.4 Examples

(May 7, 2024)

Example 13.7  Input for the NEO-HF calculation on H2O molecule with the second proton treated quantum mechanically. The electronic basis set is cc-pVDZ and the protonic is an uncontracted 2s2p2d basis set with exponents 4.0 and 8.0.

$molecule
   0 1
   H   -3.5008791    1.2736107    0.7596000
   O   -3.9840791    1.3301107   -0.0574000
   H   -4.9109791    1.2967107    0.1521000
$end

$rem
   METHOD   hf
   BASIS    cc-pvdz
   NEO      true
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
S    1    1.000000
   8.0 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   8.0 1.0
D    1    1.000000
   4.0 1.0
D    1    1.000000
   8.0 1.0
****
$end

Example 13.8  Input for the NEO-DFT/epc17-2 calculation of CH2O molecule treating both protons quantum mechanically and using simultaneous DIIS algorithm to perform NEO-SCF. The electronic basis set is cc-pVDZ and the protonic basis set is an uncontracted 1s1p basis set with exponents 4.0 and 4.0. A maximum of 10 previous Fock matrices is used to form the next guess in interpolation/extrapolation, and the NEO wavefunction is considered converged when all three criteria are met (all in atomic units): (1) the largest element of the electronic error vector is below the cutoff threshold of 10-8, (2) the largest element of the protonic error vector is below the cutoff threshold of 10-7, and (3) the energy difference between two consecutive steps is below 10-8.

$molecule
0 1
  C        0.000000    0.000000    0.000000
  O        0.000000    0.000000    1.220000
  H        0.935307    0.0000000  -0.5400000
  H       -0.935307    0.000000   -0.540000
$end

$rem
   JOBTYPE              SP
   SYM_IGNORE           TRUE
   INPUT_BOHR           FALSE
   BASIS                cc-pvdz
   NEO                  TRUE
   METHOD               pbe0
   xc_grid = 000099000302
   NEO_EPC              epc172
   NEO_N_SCF_CONVERGENCE = 7
   SCF_CONVERGENCE = 8
   NEO_E_CONV = 8
   SCF_ALGORITHM        DIIS
   NEO_SIMULTANEOUS_SCF TRUE
   NEO_STEPWISE_SCF_STEPS = 2
   DIIS_SUBSPACE_SIZE = 10
   DIIS_ERR_RMS         FALSE
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.9  Input for the NEO-DFT/epc17-2 geometry optimization calculation of all centers on CH2O molecule with both protons treated quantum mechanically. The electronic exchange-correlation functional is PBE0. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points along with the DIIS algorithm.

$molecule
   0 1
   C     0.000000    0.000000    0.000000
   O     0.000000    0.000000    1.220000
   H     0.935307    0.000000   -0.540000
   H    -0.935307    0.000000   -0.540000
$end

$rem
   JOBTYPE           OPT
   METHOD            pbe0
   BASIS             sto-3g
   NEO               true
   NEO_EPC           epc172
point_group_symmetry False
   SCF_CONVERGENCE   11
   MAX_SCF_CYCLES    100
   SCF_ALGORITHM     diis
   XC_GRID           000099000302
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.10  Input for the NEO-DFT/epc19 geometry optimization calculation of the NEO center only on open-shell OH radical molecule with a proton treated quantum mechanically. The electronic exchange-correlation functional is PBE0. The electronic basis set is 6-31G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 230 spherical quadrature points along with the DIIS algorithm.

$molecule
   0 2
   O    -4.511414   1.264878   0.000000
   H    -2.739325   1.866123   0.000000
$end

$rem
   JOBTYPE           OPT
   METHOD            pbe0
   BASIS             6-31g
   UNRESTRICTED      true
   INPUT_BOHR        true
   NEO               true
point_group_symmetry False
   SCF_CONVERGENCE   6
   MAX_SCF_CYCLES    100
   SCF_ALGORITHM     diis
   NEO_EPC           epc19
   XC_GRID           000099000230
$end

$opt
   FIXED
   1 XYZ
   ENDFIXED
$end

$neo_basis
H    2
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.11  Input for a NEO-MSDFT calculation on FHF- with a fixed F–F distance of 2.70 Å. The proton in between the two F atoms is quantized and the proton basis function centers are optimized on the NEO-MSDFT ground state. The electronic basis set is STO-3G, and the protonic basis set is an uncontracted 1s1p basis set with exponents 4.0. The electronic exchange-correlation functional is B3LYP, and the electron-proton correlation functional is epc17-2. The second basis function center for the quantum proton is input as a ghost center.

$molecule
-1  1
F      0.00000000     0.00000000    -1.35000000
F      0.00000000     0.00000000     1.35000000
H      0.00000000     0.00000000    -0.25220000
@H     0.00000000     0.00000000     0.25220000
$end

$rem
jobtype = opt
input_bohr = false
method = b3lyp
basis = sto-3g
neo = true
neo_epc = epc172
neo_msdft = 1
sym_ignore = 1
max_scf_cycles 500
scf_convergence 6
NEO_N_SCF_CONVERGENCE 6
NEO_E_CONV = 6
SCF_ALGORITHM gdm
$end

$OPT
FIXED
1 XYZ
2 XYZ
ENDFIXED
$END

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.12  Input for a NEO-MSDFT calculation on a fixed average reactant-product structure of the formic acid dimer with a C–C distance of 3.86 Å, where both transferring protons are quantized. The electronic basis set is STO-3G, and the protonic basis set is an uncontracted 1s1p basis set with exponents 4.0. The electronic exchange-correlation functional is B3LYP, and the electron-proton correlation functional is epc17-2. Only the two trans states are included in the adiabatic state expansion (note the spaces between the ones and zeros of the $neo_msdft_diabat_control section). The second center for each quantum proton is input as a ghost center. Proton density plotting for both the ground and first excited state has been enabled.

$molecule
0  1
H        -3.0310572606    0.0000000000    0.0000000000
H        -0.4438453003    1.0873992328    0.0000000000
@H        0.4438452993    1.0873992291    0.0000000000
O        -1.3616953972   -1.1310228162    0.0000000000
O        -1.3616953971    1.1310228163    0.0000000000
C        -1.9296657251    0.0000000000    0.0000000000
H         3.0310572606    0.0000000000    0.0000000000
H         0.4438452993   -1.0873992291    0.0000000000
@H       -0.4438453003   -1.0873992328    0.0000000000
O         1.3616953972    1.1310228162    0.0000000000
O         1.3616953971   -1.1310228163    0.0000000000
C         1.9296657251    0.0000000000    0.0000000000
$end

$rem
jobtype = sp
input_bohr = false
method = b3lyp
basis = sto-3g
neo = true
neo_epc = epc172
neo_msdft = 1
sym_ignore = 1
scf_convergence 6
NEO_N_SCF_CONVERGENCE = 6
NEO_E_CONV = 6
max_scf_cycles 500
SCF_ALGORITHM GDM
$end

$neo_msdft
denplt = 1
$end

$neo_msdft_diabat_control
1 0 1 0
0 1 0 1
$end

$neo_basis
H    2
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    8
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H   9
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.13  Input for a NEO-MSDFT calculation on a protonated water dimer with a fixed O–O distance of 2.80 Å, where all protons in the system are quantized, but only the proton between the two oxygen atoms is treated as transferring. The two centers for the transferring proton are written consecutively in the $molecule section, with the first one written as an H atom center and the second one is written as a ghost H atom center. The other centers do not have corresponding ghost centers and are therefore not recognized as being transferring. The electronic basis set is STO-3G, and the protonic basis set is an uncontracted 1s1p basis set with exponents 4.0. The electronic exchange-correlation functional is B3LYP, and the electron-proton correlation functional is epc17-2.

$molecule
1  1
O      -1.4000000000     0.0000000000     0.0000000000
O       1.4000000000     0.0000000000     0.0000000000
H      -0.3000000000     0.0000000000     0.0000000000
@H      0.3000000000     0.0000000000     0.0000000000
H       1.6600000000     0.7500000000    -0.5500000000
H       1.6600000000    -0.7500000000    -0.5500000000
H      -1.6600000000     0.7500000000     0.5500000000
H      -1.6600000000    -0.7500000000     0.5500000000
$end

$rem
jobtype = sp
input_bohr = false
method = b3lyp
basis = sto-3g
neo = true
neo_epc = epc172
neo_msdft = 1
sym_ignore = 1
scf_convergence 6
NEO_N_SCF_CONVERGENCE = 6
NEO_E_CONV = 6
max_scf_cycles 500
SCF_ALGORITHM GDM
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    5
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    6
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    7
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    8
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.14  Input for the NEO-DFT/epc17-2 geometry optimization calculation of a CH2O molecule in C-PCM water. A van der Waals surface is constructed around the fixed, classical nuclear point charge positions and the nuclear basis function center positions of the two quantum hydrogens. Here, the Bondi radii for hydrogen is used in the construction of the spherical cavity surrounding the delocalized proton densities, but the user has the option to specify a custom-defined atomic radii in a $van_der_waals input section. The entire cavity is scaled by a factor of αvdW=1.2, and is then discretized via the SwiG approach.

$molecule
0 1
  C        0.000000    0.000000    0.000000
  O        0.000000    0.000000    1.220000
  H        0.935307    0.0000000  -0.5400000
  H       -0.935307    0.000000   -0.540000
$end

$rem
point_group_symmetry False
   JOBTYPE              OPT
   INPUT_BOHR           FALSE
   BASIS                sto-3g
   NEO                  TRUE
   METHOD               pbe0
   xc_grid = 000099000302
   NEO_EPC              epc172
   SCF_CONVERGENCE = 8
   NEO_E_CONV = 8
   SCF_ALGORITHM        GDM
   SOLVENT_METHOD       PCM
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$pcm
   Theory               CPCM
   Method               SWIG
   Solver               INVERSION
   HeavyPoints          194
   HPoints              194
   Radii                Bondi
   vdwScale             1.2
$end

$solvent
  Dielectric   78.39
$end

Example 13.15  Input for the NEO-DFT/epc17-2 geometry optimization calculation of a Au2H, Cv molecule utilizing the fit-LANL2DZ effective core potential for the gold atoms.

$molecule
1 1
  Au       0.000000    0.000000    2.222000
  Au       0.000000    0.000000    5.502000
  H        0.000000    0.000000    3.842000
$end

$rem
   JOBTYPE                 OPT
   SYM_IGNORE             TRUE
   INPUT_BOHR            FALSE
   BASIS                 mixed
   NEO                    TRUE
   METHOD                b3lyp
   xc_grid      = 000099000302
   NEO_EPC              epc172
   NEO_N_SCF_CONVERGENCE   = 8
   SCF_CONVERGENCE         = 8
   NEO_E_CONV              = 8
   SCF_ALGORITHM           GDM
   ECP             fit-LANL2DZ
$end

$basis
Au 1
LANL2DZ
****
Au 2
LANL2DZ
****
H 3
def2-qzvp
****
$end

$neo_basis
H    3
S    1    1.000000
   5.973 1.0
S    1    1.000000
   10.645 1.0
S    1    1.000000
   17.943 1.0
S    1    1.000000
   28.950 1.0
P    1    1.000000
   7.604 1.0
P    1    1.000000
   14.701 1.0
P    1    1.000000
   23.308 1.0
D    1    1.000000
   9.011 1.0
D    1    1.000000
   19.787 1.0
F    1    1.000000
   10.914 1.0
F    1    1.000000
   20.985 1.0
****
$end

Example 13.16  Input for NEO-HF analytic Hessian calculation on HCN molecule with a proton treated quantum mechanically. The electronic basis set is STO-3G and the protonic basis is 1s1p with exponents 4.0.

$molecule
0 1
  C         0.0000000000    0.0000000000    0.9684140792
  N         0.0000000000    0.0000000000   -1.2085828830
  H         0.0000000000    0.0000000000    2.9046475823
$end

$rem
jobtyp = freq
input_bohr = true
point_group_symmetry = False
method = hf
basis = sto-3g
neo = true
SCF_ALGORITHM = gdm
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.17  Input for NEO-HF(V) on HCN molecule with a proton treated quantum mechanically. The electronic basis set is STO-3G and the protonic basis is 1s1p with exponents 4.0.

$molecule
0 1
  C         0.0000000000    0.0000000000    0.9684140792
  N         0.0000000000    0.0000000000   -1.2085828830
  H         0.0000000000    0.0000000000    2.9046475823
$end

$rem
jobtyp = freq
input_bohr = true
point_group_symmetry = False
method = hf
SCF_ALGORITHM = gdm
basis = sto-3g
neo = true
neo_scfv = 1
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.18  Input for CNEO-DFT analytic Hessian calculation on HCN molecule with a proton treated quantum mechanically. The electronic basis set is STO-3G, and the protonic basis set is an uncontracted 1s1p basis set with exponents 4.0. The electronic exchange-correlation functional is BLYP, and the electron-proton correlation functional is epc17-2.

$molecule
0 1
  C        0.000000    0.000000    0.000000
  O        0.000000    0.000000    1.220000
  H        0.935307    0.0000000  -0.5400000
  H       -0.935307    0.000000   -0.540000
$end

$rem
   JOBTYPE              SP
   SYM_IGNORE           TRUE
   INPUT_BOHR           FALSE
   BASIS                cc-pvdz
   NEO                  TRUE
   METHOD               pbe0
   xc_grid = 000099000302
   NEO_EPC              epc172
   NEO_N_SCF_CONVERGENCE = 7
   SCF_CONVERGENCE = 8
   NEO_E_CONV = 8
   SCF_ALGORITHM        DIIS
   NEO_SIMULTANEOUS_SCF TRUE
   NEO_STEPWISE_SCF_STEPS = 2
   DIIS_SUBSPACE_SIZE = 10
   DIIS_ERR_RMS         FALSE
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.19  Input for the LR-NEO-TDDFT/epc19 calculation on CH2O molecule (both protons treated quantum mechanically) of the first five roots obtained with the Davidson algorithm. The electronic exchange-correlation functional is PBE0. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points.

$molecule
   0 1
   C     0.000000    0.000000    0.000000
   O     0.000000    0.000000    1.220000
   H     0.935307    0.000000   -0.540000
   H    -0.935307    0.000000   -0.540000
$end

$rem
   METHOD            pbe0
   BASIS             sto-3g
   THRESH            14
   XC_GRID           000099000302
   S2THRESH          12
   NEO               true
   NEO_EPC           epc172
   SET_ROOTS         5
   RPA               true
   SCF_CONVERGENCE   12
   NEO_E_CONV        12
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.20  Input for the LR-NEO-TDHF calculation on the FDF- molecule treating quantum nuclei as deuterium and employing the NO_VPP option. The electronic basis set is cc-pVDZ and the protonic is an uncontracted even-tempered 8s8p basis set.

$molecule
   -1 1
   F   0.000000   0.000000   -1.122987
   F   0.000000   0.000000    1.122987
   H   0.000000   0.000000    0.000000
$end

$rem
   METHOD            hf
   BASIS             cc-pvdz
   NEO               true
   SCF_ALGORITHM     GDM
   RPA               true
   CIS_N_ROOTS       100
   THRESH            14
   S2THRESH          12
   SCF_CONVERGENCE   11
   MAX_SCF_CYCLES    300
   NEO_VPP           0
   NEO_ISOTOPE       2
   NEO_E_CONV        11
$end

$neo_basis
H    3
S    1    1.000000
   2.828400 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.828400 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
****
$end

Example 13.21  Input for the analytic LR-NEO-TDDFT gradient calculation on the CH2 molecule with both protons treated quantum mechanically. A total of four excited states are requested and the gradient is computed for the 3rd excited state. The electronic exchange-correlation functional is CAM-B3LYP, and electron-proton correlation functional epc17-2 is used. The electronic basis set is STO-3G and the protonic basis is 1s1p with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points along with the GDM algorithm.

$molecule
0 3
C  0.00000000000000e+00  0.00000000000000e+00 -5.63654429543699e-02
H  1.81800983405161e+00  0.00000000000000e+00 -9.92269386019353e-01
H -1.81800983405161e+00  0.00000000000000e+00 -9.92269386019353e-01
$end

$rem
point_group_symmetry = False
input_bohr = true
method = cam-b3lyp
basis = sto-3g
thresh = 14
s2thresh = 12
neo = true
SET_ROOTS = 4
RPA = true
xc_grid = 000099000302
unrestricted = 1
neo_epc = epc172
SCF_ALGORITHM = gdm
SET_STATE_DERIV = 3
$end

$neo_basis
H    2
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.22  Input for LR-NEO-TDDFT geometry optimization on the C2H2 molecule with both protons treated quantum mechanically. A total of three excited states are requested and the geometry optimization is computed for the 1st excited state. The electronic exchange-correlation functional is B3LYP, and electron-proton correlation functional epc17-2 is used. The electronic basis set is STO-3G and the protonic basis is 1s1p with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points along with the GDM algorithm.

$molecule
0 1
        C       0.4142076725     1.0563578037     0.0000000223
        C      -0.4142118956    -1.0563667882     0.0000000223
        H       1.1661939287     2.9673893099     0.0000000246
        H      -1.1661909474    -2.9673788285     0.0000000246
$end

$rem
point_group_symmetry = False
NEO_SET_OPT = 1
neo_epc = epc172
SET_STATE_DERIV = 1
jobtype = opt
input_bohr = true
method = b3lyp
neo = true
SCF_ALGORITHM = gdm
thresh = 14
s2thresh = 12
basis = sto-3g
rpa = true
SET_ROOTS = 3
xc_grid = 000099000302
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

Example 13.23  Input for LR-NEO-TDDFT on the C2H2 molecule with both protons treated quantum mechanically. A total of 12 excited states are requested. Ground-state protonic and electronic densities are printed in the cube files. Protonic and electronic transition densities of the first and the second vibronic excitations with electronic dominant characters are also printed in the cube files. The electronic exchange-correlation functional is B3LYP, and electron-proton correlation functional epc17-2 is used. The electronic basis set is STO-3G and the protonic basis is 1s1p with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points along with the GDM algorithm.

$molecule
0 1
       C        -0.2315710674    1.2702261467    0.0000001295
       C         0.2315702809   -1.2702255666    0.0000001295
       H         1.2946585350    2.6676952886   -0.0000000923
       H        -1.2946589903   -2.6676943717   -0.0000000923
$end

$rem
point_group_symmetry = False
input_bohr = true
method = b3lyp
neo = true
NEO_SET_ESTATE = 1
SCF_ALGORITHM = gdm
thresh = 14
s2thresh = 12
basis = sto-3g
GEOM_OPT_MAX_CYCLES = 500
rpa = true
SET_ROOTS = 12
xc_grid = 000099000302
MAKE_CUBE_FILES = true
plots = true
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$plots
grid information to plot protonic and electronic ground state densities and transition densities for two eletronic dominant transitions
   100  -4.0 6.0
   100  -5.0 4.0
   100  -4.0 4.0
   0 1 2 0
   0
   0 1
$end

Example 13.24  Formate ion simulated with RT-NEO-TDHF and excited by a Gaussian impulse response from all three orthogonal directions, x, y, and z.

$molecule
-1 1
C   0.000000  0.000000  0.316833
H   0.000000  0.000000  1.430087
O   0.000000  1.135580 -0.208193
O   0.000000 -1.135580 -0.208193
$end

$rem
NEO                   = true
SYM_IGNORE            = true
INPUT_BOHR            = false
BASIS                 = cc-pvtz
METHOD                = hf
SCF_CONVERGENCE       = 9
NEO_N_SCF_CONVERGENCE = 9
NEO_E_CONV            = 9
NEO_VPP               = 0
NEO_TDKS              = true
$end

$neo_basis
H    2
S    1    1.000000
   5.973 1.0
S    1    1.000000
   10.645 1.0
S    1    1.000000
   17.943 1.0
S    1    1.000000
   28.950 1.0
P    1    1.000000
   7.604 1.0
P    1    1.000000
   14.701 1.0
P    1    1.000000
   23.308 1.0
D    1    1.000000
   9.011 1.0
D    1    1.000000
   19.787 1.0
F    1    1.000000
   10.914 1.0
F    1    1.000000
   20.985 1.0
****
$end

$neo_tdks
METHOD              = realtime
DT                  = 0.04
MAXI TER            = 20000
FIELD_TYPE          = gaussian
FIELD_AMP           = 0.02
FIELD_PEAK          = 0.0
FIELD_TAU           = 800.0
FIELD_FREQUENCY     = 6.0
FIELD_DIRECTION     = xyz
FIELD_PARTICLE_TYPE = both
$end

Example 13.25  Excited-state intramolecular proton transfer in o-hydroxylbenzaldehyde simulated with RT-NEO-TDDFT-Ehrenfest utilzing the B3LYP electronic exchange-correlation functional and epc17-2 electron-proton correlation functional. Two additional basis function centers are added along the proton transfer path, the total simulation time was specified to be 19.35 fs, and an electronic HOMO to LUMO swap was performed to prepare the initial state.

$molecule
0 1
C  -1.310008  1.258755  0.000000
C   0.019289  0.780580  0.000000
C   0.322586 -0.621636  0.000000
C  -0.761283 -1.465586  0.000000
C  -2.125342 -0.985468  0.000000
C  -2.398971  0.362640  0.000000
O   1.008708  1.658363  0.000000
C   1.725826 -1.062678  0.000000
O   2.682115 -0.219090  0.000000
H  -3.414260  0.733314  0.000000
H  -0.596742 -2.537818  0.000000
H  -2.926679 -1.713458  0.000000
H  -1.459388  2.331114  0.000000
H   1.924136 -2.138192  0.000000
H   1.844187  1.135044  0.000000
@H  2.042593  0.928022  0.000000
@H  2.241000  0.721000  0.000000
$end

$rem
NEO                   = true
SYM_IGNORE            = true
INPUT_BOHR            = false
BASIS                 = cc-pvtz
METHOD                = b3lyp
SCF_CONVERGENCE       = 9
NEO_N_SCF_CONVERGENCE = 9
NEO_E_CONV            = 9
NEO_EPC               = epc172
NEO_VPP               = 0
NEO_TDKS              = true
$end

$neo_basis
H    15
S    1    1.000000
4.0 1.0
P    1    1.000000
4.0 1.0
****
H    16
S    1    1.000000
4.0 1.0
P    1    1.000000
4.0 1.0
****
H    17
S    1    1.000000
4.0 1.0
P    1    1.000000
4.0 1.0
****
$end

$neo_tdks
METHOD                  = ehrenfest
DT                      = 0.04
MAXITER                 = 20000
ELECTRONIC_HOMO_TO_LUMO = true
$end

Example 13.26  Ground-state intramolecular proton transfer in malonaldehyde simulated with BO-RT-NEO-TDDFT-Ehrenfest. Minimal basis sets are employed as a proof of principle. Note the large time step of 4.2 atomic units is employed since the electronic dynamics are no longer being propagated.

$molecule
0 1
O   0.000000 -1.300873  2.045662
O   0.000000  1.290832  2.045662
C   0.000000 -1.216031  0.759259
C   0.000000  1.205990  0.759259
C   0.000000 -0.005020  0.053344
H   0.000000 -0.005020 -1.024823
H   0.000000 -2.163146  0.218967
H   0.000000  2.153105  0.218967
H   0.000000 -0.301012  2.355420
$end

$rem
NEO                   = true
SYM_IGNORE            = true
INPUT_BOHR            = false
BASIS                 = sto-3g
METHOD                = b3lyp
SCF_CONVERGENCE       = 9
NEO_N_SCF_CONVERGENCE = 9
NEO_E_CONV            = 9
NEO_EPC               = epc172
NEO_VPP               = 0
NEO_TDKS              = true
$end

$neo_basis
H    9
S    1    1.000000
4.0 1.0
P    1    1.000000
4.0 1.0
****
$end

$neo_tdks
METHOD  = bo-ehrenfest
DT      = 4.2
MAXITER = 1335
$end

Example 13.27  Ground-state intramolecular proton transfer in malonaldehyde simulated with BO-RT-NEO-TDDFT-Ehrenfest, and utilizing the B3LYP-D3(0) empirical dispersion correction with custom parameters.

$molecule
0 1
O   0.000000 -1.300873  2.045662
O   0.000000  1.290832  2.045662
C   0.000000 -1.216031  0.759259
C   0.000000  1.205990  0.759259
C   0.000000 -0.005020  0.053344
H   0.000000 -0.005020 -1.024823
H   0.000000 -2.163146  0.218967
H   0.000000  2.153105  0.218967
H   0.000000 -0.301012  2.355420
$end

$rem
NEO                   = true
SYM_IGNORE            = true
INPUT_BOHR            = false
BASIS                 = sto-3g
METHOD                = b3lyp
SCF_CONVERGENCE       = 9
NEO_N_SCF_CONVERGENCE = 9
NEO_E_CONV            = 9
NEO_EPC               = epc172
NEO_VPP               = 0
NEO_TDKS              = true
DFT_D                 = D3_ZERO
DFT_D3_S6             = 100000
DFT_D3_RS6            = 126100
DFT_D3_S8             = 170300
DFT_D3_3BODY          = FALSE
$end

$neo_basis
H    9
S    1    1.000000
4.0 1.0
P    1    1.000000
4.0 1.0
****
$end

$neo_tdks
METHOD  = bo-ehrenfest
DT      = 4.2
MAXITER = 1335
$end

Example 13.28  Input for the NEO-RICCSD calculation on H2O molecule with the second proton treated quantum mechanically. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. The electronic auxiliary basis set is RIMP2-aug-cc-pVDZ and the protonic auxiliary basis set is an uncontracted even-tempered 8s8p basis set.

$molecule
0 1
O          0.00000       -0.07579        0.00000
H          0.86681        0.60144        0.00000
H         -0.86681        0.60144        0.00000
$end

$rem
neo = true
basis = sto-3g
aux_basis = rimp2-aug-cc-pVDZ
NEO_RICCSD 1
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$neo_aux_basis
H   3
S    1    1.000000
   2.8284 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.8284 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
****
$end

Example 13.29  Input for the NEO-SCS-MP2 calculation on CH2O molecule with the both protons treated quantum mechanically. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. The electronic auxiliary basis set is RIMP2-aug-cc-pVDZ and the protonic auxiliary basis set is an uncontracted even-tempered 8s8p basis set. SCS scaling corresponds to css=0.33, cos=1.2 and cep=1.2.

$molecule
0 1
C        0.000000    0.000000    0.000000
O        0.000000    0.000000    1.220000
H        0.935307    0.0000000  -0.5400000
H       -0.935307    0.000000   -0.540000
$end

$rem
method = hf
basis = sto-3g
neo = true
sym_ignore = 1
aux_basis = rimp2-cc-pVDZ
scf_convergence 10
max_scf_cycles 100
SCF_ALGORITHM diis
NEO_E_CONV 10
NEO_RIMP2 1
SCS 1
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
H    4
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$neo_aux_basis
H   3
S    1    1.000000
   2.8284 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.8284 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
D    1    1.000000
   2.8284 1.0
D    1    1.000000
   4.0 1.0
D    1    1.000000
   5.6569 1.0
D    1    1.000000
   8.0 1.0
D    1    1.000000
   11.3137 1.0
D    1    1.000000
   16.0 1.0
D    1    1.000000
   22.6274 1.0
D    1    1.000000
   32.0 1.0
****
H   4
S    1    1.000000
   2.8284 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.8284 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
D    1    1.000000
   2.8284 1.0
D    1    1.000000
   4.0 1.0
D    1    1.000000
   5.6569 1.0
D    1    1.000000
   8.0 1.0
D    1    1.000000
   11.3137 1.0
D    1    1.000000
   16.0 1.0
D    1    1.000000
   22.6274 1.0
D    1    1.000000
   32.0 1.0
****
$end

Example 13.30  Input for the NEO-OOMP2 calculation on H2O molecule with the second proton treated quantum mechanically. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. The electronic auxiliary basis set is RIMP2-aug-cc-pVDZ and the protonic auxiliary basis set is an uncontracted even-tempered 8s8p basis set.

$molecule
0 1
O          0.00000       -0.07579        0.00000
H          0.86681        0.60144        0.00000
H         -0.86681        0.60144        0.00000
$end

$rem
input_bohr = false
method = hf
basis = sto-3g
aux_basis = rimp2-aug-cc-pVDZ
neo = true
sym_ignore = 1
scf_convergence 10
max_scf_cycles 100
SCF_ALGORITHM diis
NEO_E_CONV 10
NEO_VPP 0
NEO_RIMP2 2
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$neo_aux_basis
H   3
S    1    1.000000
   2.8284 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.8284 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
D    1    1.000000
   2.8284 1.0
D    1    1.000000
   4.0 1.0
D    1    1.000000
   5.6569 1.0
D    1    1.000000
   8.0 1.0
D    1    1.000000
   11.3137 1.0
D    1    1.000000
   16.0 1.0
D    1    1.000000
   22.6274 1.0
D    1    1.000000
   32.0 1.0
****
$end

Example 13.31  Input for the NEO-SOS-OOMP2 calculation on H2O molecule with the second proton treated quantum mechanically. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. The electronic auxiliary basis set is RIMP2-aug-cc-pVDZ and the protonic auxiliary basis set is an uncontracted even-tempered 8s8p basis set. SOS scaling corresponds to css=0.0 and cos=1.2, with a custom value of cep=1.5.

$molecule
0 1
O          0.00000       -0.07579        0.00000
H          0.86681        0.60144        0.00000
H         -0.86681        0.60144        0.00000
$end

$rem
input_bohr = false
method = hf
basis = sto-3g
aux_basis = rimp2-aug-cc-pVDZ
neo = true
sym_ignore = 1
scf_convergence 10
max_scf_cycles 100
SCF_ALGORITHM diis
NEO_E_CONV 10
NEO_VPP 0
NEO_RIMP2 2
SCS 2
EP_FACTOR 1500000
$end

$neo_basis
H    3
S    1    1.000000
   4.0 1.0
P    1    1.000000
   4.0 1.0
****
$end

$neo_aux_basis
H   3
S    1    1.000000
   2.8284 1.0
S    1    1.000000
   4.0 1.0
S    1    1.000000
   5.6569 1.0
S    1    1.000000
   8.0 1.0
S    1    1.000000
   11.3137 1.0
S    1    1.000000
   16.0 1.0
S    1    1.000000
   22.6274 1.0
S    1    1.000000
   32.0 1.0
P    1    1.000000
   2.8284 1.0
P    1    1.000000
   4.0 1.0
P    1    1.000000
   5.6569 1.0
P    1    1.000000
   8.0 1.0
P    1    1.000000
   11.3137 1.0
P    1    1.000000
   16.0 1.0
P    1    1.000000
   22.6274 1.0
P    1    1.000000
   32.0 1.0
D    1    1.000000
   2.8284 1.0
D    1    1.000000
   4.0 1.0
D    1    1.000000
   5.6569 1.0
D    1    1.000000
   8.0 1.0
D    1    1.000000
   11.3137 1.0
D    1    1.000000
   16.0 1.0
D    1    1.000000
   22.6274 1.0
D    1    1.000000
   32.0 1.0
****
$end