X

Search Results

Searching....

11.5 Effective Fragment Potential Method

11.5.4 Pairwise Fragment Energy Decomposition

(May 7, 2024)

Decomposition of the interaction energy of the QM and EFP regions in the energy components and in the contributions of individual solvent molecules is available for the ground and excited states. 1185 Slipchenko L. V.
J. Phys. Chem. A
(2022), 128, pp. 656–669.
Link
The ground state QM/EFP energy is decomposed as:

EQM–EF, gr=Eelec(1)+Epol-solute(0)+Epol-solute(1)+Epol-frag+EQM–EFPdisp+EQM–EFex-rep=Ψgr0|V^Coul|Ψgr0+[Ψgrsol|H^QM|Ψgrsol-Ψgr0|H^QM|Ψgr0]+[Ψgrsol|V^Coul|Ψgrsol-Ψgr0|V^Coul|Ψgr0]+[EQM–EF, grpol+Ψgrsol|V^pol|Ψgrsol]+EQM-EFdisp+EQM–EFex-rep (11.78)

where the terms (from left to right) mean the first-order electrostatic energy, solute polarization energy of the zero- and first orders, solvent polarization energy, and additive dispersion and exchange-repulsion terms. Superscripts “sol” and “0” denote QM wavefunction optimized in a solvent and gas phase, respectively. Each of the integrals involving V^Coul and V^pol operators can be decomposed into individual fragment contributions, e.g.,

Eelec(1)=Ψgr0|V^Coul|Ψgr0=AfragmentsΨgr0|kAV^kCoul|Ψgr0 (11.79)

and similarly for the other terms. Polarization energy can be approximately decomposed into individual fragment contributions as:

EQM–EF, grpol=12AfragmentspA(-μpFai,nuc,p+μ¯pFai,elec,p) (11.80)

where p are polarizability expansion points. Dispersion and exchange-repulsion terms are also pairwise-additive.

The only term that cannot be similarly split into fragment contributions is the zero-order solute polarization energy:

Epol-solute(0)=Ψgrsol|H^QM|Ψgrsol-Ψgr0|H^QM|Ψgr0. (11.81)

This term is referred to as "non-separable term" in the output printout. From perturbation theory, this term is expected to be about twice smaller and of the opposite sign than the first-order solute polarization term:

Epol-solute(1)=Ψgrsol|V^Coul|Ψgrsol-Ψgr0|V^Coul|Ψgr0. (11.82)

Application of the energy decomposition analysis to the electronically excited states is described below. The zero-order total solvatochromic shift can be represented as:

EsolvQM/EFP=Afragments(ΔEex/grelec(1),A+ΔEex/grpol-solute(1),A+ΔEex/grpol-frag(1),A)+ΔEex/grpol-solute(0),A. (11.83)

The various terms are defined as

ΔEex/grelec(1),A =kA(Ψex0|V^kCoul|Ψex0-Ψgr0|V^kCoul|Ψgr0) (11.84)
ΔEex/grpol-solute(1),A =kA(Ψexsol|V^kCoul|Ψexsol-Ψex0|V^kCoul|Ψex0-Ψgrsol|V^kCoul|Ψgrsol+Ψgr0|V^kCoul|Ψgr0) (11.85)
ΔEex/grpol-frag(1),A =pA(Ψexsol|V^p,grpol|Ψexsol-Ψgrsol|V^p,grpol|Ψgrsol) (11.86)
ΔEex/grpol-solute(0),A =Ψexsol|H^QM|Ψexsol-Ψex0|H^QM|Ψex0-Ψgrsol|H^QM|Ψgrsol+Ψgr0|H^QM|Ψgr0. (11.87)

Fragment contribution of the perturbative polarization correction to the excited states [Eq.  (11.77)] can be obtained as follows:

ΔEpol,A=12pA[-(μexp-μgrp)(Fmult,p+Fnuc,p)+(μ~expFexai,p-μ~grpFgrai,p)-(μexp-μgrp+μ~exp-μ~grp)Fexai,p] (11.88)

where A is a fragment of interest.

The energy is decomposed separately for all computed excited states. The excited state analysis is implemented for CIS/TD-DFT and EOM-CCSD methods both in ccman and ccman2. Energy decomposition analysis is activated by keyword EFP_PAIRWISE. Both ground and excited state energy decompositions are conducted in two steps, controlled by keyword EFP_ORDER. In the first step (EFP_ORDER = 1), the first-order electrostatic energy and Ψgr0|H^QM|Ψgr0 (or Ψex0|H^QM|Ψex0 for the excited states) part of the non-separable term are computed and printed. In the second step (EFP_ORDER = 2), the remaining terms are evaluated. Thus, for a complete analysis, the user is required to conduct two consequent simulations with EFP_ORDER set to 1 and 2, respectively. Table 11.9 shows notations used in the output to denote various terms in Eqs.  (11.78)–(11.88).

Table 11.9: Notation for energy decomposition terms
EFP_ORDER = 1
(0) ELEC ENERGY <Psi_0|Vcoul|Psi_0> Ψgr/ex0|V^Coul,A|Ψgr/ex0
TOTAL QM-EFP ELECTROSTATIC ENERGY Egr/exelec(1)=Afragments(0)A
NON-SEPARABLE TERM <Psi_0|H0|Psi_0> Ψgr/ex0|H^QM|Ψgr/ex0
EFP_ORDER = 2
(1) ELEC + SOLUTE POL ENERGY <Psi_sol|Vcoul|Psi_sol> Ψgr/exsol|V^Coul,A|Ψgr/exsol
(2) SOLVENT POL ENERGY Epol 12pA(-μgrpFai,nuc,p+μ¯grpFgrai,elec,p)
(3) SOLVENT POL ENERGY <Psi_sol|Vpol|Psi_sol> Ψgr/exsol|V^pol,Agr|Ψgr/exsol
(4) SOLVENT POL ENERGY Epol_corr for excited states only, see Eq. (11.88)
(5) SOLVENT POL ENERGY TOTAL (2)+(3)
(6) PAIRWISE TOTAL ENERGY (1) + (2) + (3)
QM-EFP TOTAL ENERGY Afragments(6)A
NON-SEPARABLE TERM <Psi_sol|H0|Psi_sol> Ψgr/exsol|H^QM|Ψgr/exsol