X

Search Results

Searching....

12.1 Introduction

12.1.1 Overview

(November 19, 2024)

Molecular complexes and molecular clusters represent a broad class of systems with interesting chemical and physical properties. Such systems can be naturally partitioned into fragments each representing a molecule or several molecules. Q-Chem contains a set of methods designed to use such partitioning either for physical or computational advantage. Some of these methods (e.g. the ALMO-EDA method and its most recent updates/extensions) were developed and implemented by Dr. Rustam Z. Khaliullin, Dr. Paul R. Horn, Dr. Yuezhi Mao, Dr. Jonathan Thirman, Dr. Daniel S. Levine, Dr. Qinghui Ge, and Matthias Loipersberger working with Prof. Martin Head-Gordon at the University of California–Berkeley. Other methods [e.g., the XSAPT family of methods and TDDFT(MI)] were developed by Drs. Leif Jacobson, Ka Un Lao, and Jie Liu working with Prof. John Herbert at Ohio State University.

The list of methods that use partitioning includes:

  • Initial guess at the MOs as a superposition of the converged MOs on the isolated fragments (FRAGMO guess). 646 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link

  • Constrained (locally-projected) SCF methods for molecular interactions (SCF MI methods) between both closed-shell 646 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link
    and open-shell 560 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link
    fragments.

  • Single Roothaan-step (RS) correction methods that improve FRAGMO and SCF MI description of molecular systems. 646 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link
    , 560 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link

  • Automated calculation of the BSSE with counterpoise correction method (full SCF and RS implementation).

  • The original version the ALMO-EDA method (energy decomposition analysis based on absolutely localized molecular orbitals), including the associated charge transfer analysis, 645 Khaliullin R. Z. et al.
    J. Phys. Chem. A
    (2007), 111, pp. 8753.
    Link
    , 643 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    J. Chem. Phys.
    (2008), 128, pp. 184112.
    Link
    , 560 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link
    and the analysis of intermolecular bonding in terms of complementary occupied-virtual pairs (COVPs). 643 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    J. Chem. Phys.
    (2008), 128, pp. 184112.
    Link
    , 644 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    Chem. Eur. J
    (2009), 15, pp. 851.
    Link
    , 560 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link

  • The second-generation ALMO-EDA method, 559 Horn P. R., Mao Y., Head-Gordon M.
    Phys. Chem. Chem. Phys.
    (2016), 18, pp. 23067.
    Link
    , 838 Mao Y. et al.
    Annu. Rev. Phys. Chem.
    (2021), 72, pp. 641.
    Link
    , 556 Horn P. R., Head-Gordon M.
    J. Chem. Phys.
    (2015), 143, pp. 114111.
    Link
    , 558 Horn P. R., Mao Y., Head-Gordon M.
    J. Chem. Phys.
    (2016), 144, pp. 114107.
    Link
    , 837 Mao Y. et al.
    Phys. Chem. Chem. Phys.
    (2020), 22, pp. 12867.
    Link
    including its extension to single-bond interactions 765 Levine D. S. et al.
    J. Chem. Theory Comput.
    (2016), 12, pp. 4812.
    Link
    , 763 Levine D. S., Head-Gordon M.
    J. Phys. Chem. Lett.
    (2017), 8, pp. 1967.
    Link
    , 764 Levine D. S., Head-Gordon M.
    Proc. Natl. Acad. Sci. USA
    (2017), 114, pp. 12649.
    Link
    and the ALMO-EDA(solv) scheme 839 Mao Y. et al.
    Chem. Sci.
    (2021), 12, pp. 1398.
    Link
    for the inclusion of implicit solvents in EDA calculation.

  • The adiabatic ALMO-EDA method that analyzes the effects intermolecular interactions on molecular properties. 836 Mao Y., Horn P. R., Head-Gordon M.
    Phys. Chem. Chem. Phys.
    (2017), 19, pp. 5944.
    Link
    , 810 Loipersberger M., Mao Y., Head-Gordon M.
    J. Chem. Theory Comput.
    (2020), 16, pp. 1073.
    Link

  • An extension of the ALMO-EDA to RI-MP2. 1262 Thirman J., Head-Gordon M.
    J. Chem. Phys.
    (2015), 143, pp. 084124.
    Link
    , 1263 Thirman J., Head-Gordon M.
    J. Phys. Chem. A
    (2017), 121, pp. 717.
    Link
    , 809 Loipersberger M. et al.
    J. Phys. Chem. A
    (2019), 123, pp. 9621.
    Link

  • An extension of the ALMO-EDA to intermolecular interactions involving excited-state molecules (calculated by CIS or TDDFT/TDA). 404 Ge Q., Mao Y., Head-Gordon M.
    J. Chem. Phys.
    (2018), 148, pp. 064105.
    Link
    , 403 Ge Q., Head-Gordon M.
    J. Chem. Theory Comput.
    (2018), 14, pp. 5156.
    Link

  • The variational explicit polarization (XPol) method, a self-consistent, charge-embedded, monomer-based SCF calculation. 1400 Xie W. et al.
    J. Chem. Phys.
    (2008), 128, pp. 234108.
    Link
    , 584 Jacobson L. D., Herbert J. M.
    J. Chem. Phys.
    (2011), 134, pp. 094118.
    Link
    , 521 Herbert J. M. et al.
    Phys. Chem. Chem. Phys.
    (2012), 14, pp. 7679.
    Link

  • Symmetry-adapted perturbation theory (SAPT), a monomer-based method for computing intermolecular interaction energies and decomposing them into physically-meaningful components. 604 Jeziorski B., Moszynski R., Szalewicz K.
    Chem. Rev.
    (1994), 94, pp. 1887.
    Link
    , 1247 Szalewicz K.
    Wiley Interdiscip. Rev.: Comput. Mol. Sci.
    (2012), 2, pp. 254.
    Link

  • XPol+SAPT (XSAPT), which extends the SAPT methodology to systems consisting of more than two monomers. 584 Jacobson L. D., Herbert J. M.
    J. Chem. Phys.
    (2011), 134, pp. 094118.
    Link
    , 521 Herbert J. M. et al.
    Phys. Chem. Chem. Phys.
    (2012), 14, pp. 7679.
    Link
    , 585 Jacobson L. D. et al.
    Annu. Rep. Comput. Chem.
    (2013), 9, pp. 25.
    Link

  • Closed- and open-shell AO-XSAPT(KS)+D, a dispersion-corrected version of XSAPT in atomic orbital basis that affords accurate intermolecular interaction energies at very low cost. 719 Lao K. U., Herbert J. M.
    J. Phys. Chem. Lett.
    (2012), 3, pp. 3241.
    Link
    , 720 Lao K. U., Herbert J. M.
    J. Chem. Phys.
    (2013), 139, pp. 034107.
    Link
    , 722 Lao K. U., Herbert J. M.
    J. Phys. Chem. A
    (2015), 119, pp. 235.
    Link

  • A stable and physically-motivated energy decomposition approach, SAPT/cDFT, in which cDFT is used to define the charge-transfer component of the interaction energy and SAPT defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. 723 Lao K. U., Herbert J. M.
    J. Chem. Theory Comput.
    (2016), 12, pp. 2569.
    Link

  • The electrostatically-embedded many-body expansion 281 Dahlke E. E., Truhlar D. G.
    J. Chem. Theory Comput.
    (2007), 3, pp. 46.
    Link
    , 1096 Richard R. M., Lao K. U., Herbert J. M.
    J. Chem. Phys.
    (2014), 141, pp. 014108.
    Link
    , 1097 Richard R. M., Lao K. U., Herbert J. M.
    Acc. Chem. Res.
    (2014), 47, pp. 2828.
    Link
    , 726 Lao K. U. et al.
    J. Chem. Phys.
    (2016), 144, pp. 164105.
    Link
    and the fragment molecular orbital method,654, 355 for decomposing large clusters into small numbers of monomers, facilitating larger calculations.

  • The Ab Initio Frenkel Davydov Model, 902 Morrison A. F., You Z.-Q., Herbert J. M.
    J. Chem. Theory Comput.
    (2014), 10, pp. 5366.
    Link
    , 899 Morrison A. F., Herbert J. M.
    J. Phys. Chem. Lett.
    (2015), 6, pp. 4390.
    Link
    a low-order scaling, highly parallelizable approach to computing excited state properties of liquids, crystals, and aggregates.

  • TDDFT for molecular interactions [TDDFT(MI)], an excited-state extension of SCF MI that offers a reduced-cost way to compute excited states in molecular clusters, crystals, and aggregates. 794 Liu J., Herbert J. M.
    J. Chem. Phys.
    (2015), 143, pp. 034106.
    Link
    , 795 Liu J., Herbert J. M.
    J. Chem. Theory Comput.
    (2016), 12, pp. 157.
    Link
    , 525 Herbert J. M. et al.
    Acc. Chem. Res.
    (2016), 49, pp. 931.
    Link

  • The ALMO-CIS and ALMO-CIS+CT models (also applicable to TDDFT/TDA) for computing a substantial number of excited states in large molecular clusters. 238 Closser K. D. et al.
    J. Chem. Theory Comput.
    (2015), 11, pp. 5791.
    Link
    , 405 Ge Q. et al.
    J. Chem. Phys.
    (2017), 146, pp. 044111.
    Link

Other fragment-based approaches in Q-Chem include:

  • The Effective Fragment Potential (EFP) method 407 Ghosh D. et al.
    J. Phys. Chem. A
    (2010), 114, pp. 12739.
    Link
    developed by Prof. Lyudmila Slipchenko at Purdue University and Prof. Anna Krylov at USC (see Section 11.5)

  • Fragment-based approaches to diabatic states and electronic couplings (see Section 10.14.3)