It is important to ensure there are sufficient resources available for the necessary integral calculations and transformations. For CCMAN/CCMAN2 algorithms, these resources are controlled using the $rem variables CC_MEMORY, MEM_STATIC and MEM_TOTAL (see Section 6.16).
The exact flavor of correlation treatment within equation-of-motion methods is defined by METHOD (see Section 7.1). For EOM-CCSD, once should set METHOD to EOM-CCSD, for EOM-MP2, METHOD = EOM-CCSD, etc.. In addition, a specification of the number of target states is required through XX_STATES (XX designates the type of the target states, e.g., EE, SF, IP, EA, DIP, DSF, etc.). Users must be aware of the point group symmetry of the system being studied and also the symmetry of the initial and target states of interest, as well as symmetry of transition. It is possible to turn off the use of symmetry by CC_SYMMETRY. If set to FALSE the molecule will be treated as having symmetry and all states will be of symmetry.
Note: 1. In finite-difference calculations, the symmetry is turned off automatically, and the user must ensure that XX_STATES is adjusted accordingly. 2. In CCMAN, mixing different EOM models in a single calculation is only allowed in Dyson orbitals calculations. In CCMAN2, different types of target states can be requested in a single calculation.
Below we describe alternative way to specify correlation treatment in EOM-CC/CI calculations. These keywords will be eventually phased out. By default, the level of correlation of the EOM part of the wave function (i.e., maximum excitation level in the EOM operators ) is set to match CORRELATION, however, one can mix different correlation levels for the reference and EOM states by using EOM_CORR. To request a CI calculation, set CORRELATION = CI and select type of CI expansion by EOM_CORR. The table below shows default and allowed CORRELATION and EOM_CORR combinations.
CORRELATION | Default | Allowed | Target states | CCMAN / |
---|---|---|---|---|
EOM_CORR | EOM_CORR | CCMAN2 | ||
CI | none | CIS, CIS(D) | EE, SF | y/n |
CISD | EE, SF, IP | y/n | ||
SDT, DT | EE, SF, DSF | y/n | ||
CIS(D) | CIS(D) | N/A | EE, SF | y/n |
CCSD, OD | CISD | EE, SF, IP, EA, DIP | y/y | |
SD(fT) | EE, IP, EA | n/y | ||
SD(dT), SD(fT) | EE, SF, fake IP/EA | y/n | ||
SD(dT), SD(fT), SD(sT) | IP | y/n | ||
SDT, DT | EE, SF, IP, EA, DIP, DSF | y/n |
Table 7.2 shows the correct combinations of CORRELATION and EOM_CORR for standard EOM and CI models.
Method | CORRELATION | EOM_CORR | Target states selection |
CIS | CI | CIS | EE_STATES |
EE_SINGLETS, EE_TRIPLETS | |||
SF-CIS | CI | CIS | SF_STATES |
CIS(D) | CI | CIS(D) | EE_STATES |
EE_SINGLETS, EE_TRIPLETS | |||
SF-CIS(D) | CI | CIS(D) | SF_STATES |
CISD | CI | CISD | EE_STATES |
EE_SINGLETS, EE_TRIPLETS | |||
SF-CISD | CI | CISD | SF_STATES |
IP-CISD | CI | CISD | IP_STATES |
CISDT | CI | SDT | EE_STATES |
EE_SINGLETS, EE_TRIPLETS | |||
SF-CISDT | CI | SDT or DT | SF_STATES |
EOM-EE-CCSD | CCSD | EE_STATES | |
EE_SINGLETS, EE_TRIPLETS | |||
EOM-SF-CCSD | CCSD | SF_STATES | |
EOM-IP-CCSD | CCSD | IP_STATES | |
EOM-EA-CCSD | CCSD | EA_STATES | |
EOM-DEA-CCSD | CCSD | DIP_STATES | |
DEA_SINGLETS, DEA_TRIPLETS | |||
EOM-DIP-CCSD | CCSD | DIP_STATES | |
DIP_SINGLETS, DIP_TRIPLETS | |||
EOM-2SF-CCSD | CCSD | SDT or DT | DSF_STATES |
EOM-EE-(2,3) | CCSD | SDT | EE_STATES |
EE_SINGLETS, EE_TRIPLETS | |||
EOM-SF-(2,3) | CCSD | SDT | SF_STATES |
EOM-IP-(2,3) | CCSD | SDT | IP_STATES |
EOM-SF-CCSD(dT) | CCSD | SD(dT) | SF_STATES |
EOM-SF-CCSD(fT) | CCSD | SD(fT) | SF_STATES |
EOM-IP-CCSD(dT) | CCSD | SD(dT) | IP_STATES |
EOM-IP-CCSD(fT) | CCSD | SD(fT) | IP_STATES |
EOM-IP-CCSD(sT) | CCSD | SD(sT) | IP_STATES |
The most relevant EOM-CC input options follow.
EE_STATES
EE_STATES
Sets the number of excited state roots to find. For closed-shell reference,
defaults into EE_SINGLETS. For open-shell references, specifies all
low-lying states.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any excited states.
OPTIONS:
Find excited states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
EE_SINGLETS
EE_SINGLETS
Sets the number of singlet excited state roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any excited states.
OPTIONS:
Find excited states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
EE_TRIPLETS
EE_TRIPLETS
Sets the number of triplet excited state roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any excited states.
OPTIONS:
Find excited states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
SF_STATES
SF_STATES
Sets the number of spin-flip target states roots to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any excited states.
OPTIONS:
Find SF states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DSF_STATES
DSF_STATES
Sets the number of doubly spin-flipped target states roots to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DSF states.
OPTIONS:
Find doubly spin-flipped states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
IP_STATES
IP_STATES
Sets the number of ionized target states roots to find. By default,
electron will be removed (see EOM_IP_BETA).
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any IP states.
OPTIONS:
Find ionized states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
IP_ALPHA
IP_ALPHA
Sets the number of ionized target states derived by removing electron
().
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any IP/ states.
OPTIONS:
Find ionized states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
IP_BETA
IP_BETA
Sets the number of ionized target states derived by removing electron
(, default for EOM-IP).
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any IP/ states.
OPTIONS:
Find ionized states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
EA_STATES
EA_STATES
Sets the number of attached target states roots to find. By default,
electron will be attached (see EA_BETA).
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any EA states.
OPTIONS:
Find EA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
EA_ALPHA
EA_ALPHA
Sets the number of attached target states derived by attaching
electron (, default in EOM-EA).
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any EA states.
OPTIONS:
Find EA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
EA_BETA
EA_BETA
Sets the number of attached target states derived by attaching
electron (, EA-SF).
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any EA states.
OPTIONS:
Find EA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_STATES
DIP_STATES
Sets the number of DIP roots to find. For
closed-shell reference, defaults into DIP_SINGLETS. For open-shell references,
specifies all low-lying states.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DIP states.
OPTIONS:
Find DIP states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_SINGLETS
DIP_SINGLETS
Sets the number of singlet DIP roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any singlet DIP states.
OPTIONS:
Find DIP singlet states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_TRIPLETS
DIP_TRIPLETS
Sets the number of triplet DIP roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DIP triplet states.
OPTIONS:
Find DIP triplet states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_AA_STATES
DIP_AA_STATES
Sets the number of DIP roots (remove two electrons) to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DIP states.
OPTIONS:
Find DIP states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_BB_STATES
DIP_BB_STATES
Sets the number of DIP roots (remove two electrons) to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DIP states.
OPTIONS:
Find DIP states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DIP_AB_STATES
DIP_AB_STATES
Sets the number of DIP roots (remove one and one electron) to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DIP states.
OPTIONS:
Find DIP states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_STATES
DEA_STATES
Sets the number of DEA roots to find. For
closed-shell reference, defaults into DEA_SINGLETS. For open-shell references,
specifies all low-lying states.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DEA states.
OPTIONS:
Find DIP states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_SINGLETS
DEA_SINGLETS
Sets the number of singlet DEA roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any singlet DEA states.
OPTIONS:
Find DEA singlet states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_TRIPLETS
DEA_TRIPLETS
Sets the number of triplet DEA roots to find. Valid only
for closed-shell references.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DEA triplet states.
OPTIONS:
Find DEA triplet states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_AA_STATES
DEA_AA_STATES
Sets the number of DEA roots (two electrons) to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DEA transitions.
OPTIONS:
Find DEA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_BB_STATES
DEA_BB_STATES
Sets the number of DEA roots (two electrons) to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DEA transitions.
OPTIONS:
Find DEA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
DEA_AB_STATES
DEA_AB_STATES
Sets the number of DEA roots (one and one electron) to find.
TYPE:
INTEGER/INTEGER ARRAY
DEFAULT:
0
Do not look for any DEA transitions.
OPTIONS:
Find DEA states in the first irrep, states
in the second irrep etc.
RECOMMENDATION:
None
Note: It is a symmetry of a transition rather than that of a target state which is specified in excited state calculations. The symmetry of the target state is a product of the symmetry of the reference state and the transition. For closed-shell molecules, the former is fully symmetric and the symmetry of the target state is the same as that of transition, however, for open-shell references this is not so.
Note: In earlier versions of Q-Chem, we used EOM_XX_STATES. These keywords were replaced by XX_STATES for uniformity (e.g., they are also used in ADC methods to specify target ADC states). For backward compatibility, the old keywords are aliased to the new ones, so old inputs would still work. However, these old keywords eventually will be depreciated. It is recommended to switch to the new ones.
Note: For the XX_STATES options, Q-Chem will increase the number of roots if it suspects degeneracy, or change it to a smaller value, if it cannot generate enough guess vectors to start the calculations.
EOM_FAKE_IPEA
EOM_FAKE_IPEA
If TRUE, calculates fake EOM-IP or EOM-EA energies and properties
using the diffuse orbital trick. Default for EOM-EA and Dyson orbital
calculations in CCMAN.
TYPE:
LOGICAL
DEFAULT:
FALSE (use proper EOM-IP code)
OPTIONS:
FALSE, TRUE
RECOMMENDATION:
None. This feature only works for CCMAN.
Note: When EOM_FAKE_IPEA is set to TRUE, it can change the convergence of Hartree-Fock iterations compared to the same job without EOM_FAKE_IPEA, because a very diffuse basis function is added to a center of symmetry before the Hartree-Fock iterations start. For the same reason, BASIS2 keyword is incompatible with EOM_FAKE_IPEA. In order to read Hartree-Fock guess from a previous job, you must specify EOM_FAKE_IPEA (even if you do not request for any correlation or excited states) in that previous job. Currently, the second moments of electron density and Mulliken charges and spin densities are incorrect for the EOM-IP/EA-CCSD target states.
EOM_USER_GUESS
EOM_USER_GUESS
Specifies if user-defined guess will be used in EOM calculations.
TYPE:
LOGICAL
DEFAULT:
FALSE
OPTIONS:
TRUE
Solve for a state that has maximum overlap with a trans-n
specified in $eom_user_guess.
RECOMMENDATION:
The orbitals are ordered by energy, as printed in the beginning of the
CCMAN2 output. Not available in CCMAN.
EOM_SHIFT
EOM_SHIFT
Specifies energy shift in EOM calculations.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
corresponds to
hartree shift (i.e., 11000 = 11 hartree); solve for
eigenstates around this value.
RECOMMENDATION:
Not available in CCMAN.
EOM_NGUESS_DOUBLES
EOM_NGUESS_DOUBLES
Specifies number of excited state guess vectors which are double excitations.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
Include guess vectors that are double excitations
RECOMMENDATION:
This should be set to the expected number of doubly excited states,
otherwise they may not be found.
EOM_NGUESS_SINGLES
EOM_NGUESS_SINGLES
Specifies number of excited state guess vectors that are single excitations.
TYPE:
INTEGER
DEFAULT:
Equal to the number of excited states requested
OPTIONS:
Include guess vectors that are single excitations
RECOMMENDATION:
Should be greater or equal than the number of excited states requested, unless
.
EOM_PRECONV_SINGLES
EOM_PRECONV_SINGLES
When not zero, singly excited vectors are converged prior to a full excited
states calculation. Sets the maximum number of iterations for pre-converging
procedure.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0
do not pre-converge
1
pre-converge singles
RECOMMENDATION:
Sometimes helps with problematic convergence.
Note: In CCMAN, setting EOM_PRECONV_SINGLES = would result in Davidson iterations pre-converging singles.
EOM_PRECONV_DOUBLES
EOM_PRECONV_DOUBLES
When not zero, doubly excited vectors are converged prior to a full excited
states calculation. Sets the maximum number of iterations for pre-converging procedure
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0
Do not pre-converge
N
Perform N Davidson iterations pre-converging doubles.
RECOMMENDATION:
Occasionally necessary to ensure a doubly excited state is found. Also used in DSF, DIP, and DEA calculations
instead of EOM_PRECONV_SINGLES
Note: Not available for EOM-EE in CCMAN2.
EOM_PRECONV_SD
EOM_PRECONV_SD
When not zero, EOM vectors are pre-converged prior to a full excited states
calculation. Sets the maximum number of iterations for pre-converging
procedure.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0
do not pre-converge
N
perform N Davidson iterations pre-converging singles and doubles.
RECOMMENDATION:
Occasionally necessary to ensure that all low-lying states are
found. Also, very useful in EOM(2,3) calculations.
None
Note: Not available in CCMAN2.
EOM_DAVIDSON_CONVERGENCE
EOM_DAVIDSON_CONVERGENCE
Convergence criterion for the RMS residuals (square of the norm) of excited-state vectors.
TYPE:
INTEGER
DEFAULT:
5
Corresponding to
OPTIONS:
Corresponding to convergence criterion
RECOMMENDATION:
Use the default. Normally this value be the same as EOM_DAVIDSON_THRESHOLD.
EOM_DAVIDSON_THRESHOLD
EOM_DAVIDSON_THRESHOLD
Specifies threshold for including a new expansion vector in the iterative
Davidson diagonalization. Their norm must be above this threshold.
TYPE:
INTEGER
DEFAULT:
00103
Corresponding to 0.00001
OPTIONS:
Integer code is mapped to , i.e., 02505->2.5
RECOMMENDATION:
Use the default unless converge problems are encountered. Should normally be set
to the same values as EOM_DAVIDSON_CONVERGENCE, if convergence problems arise
try setting to a value slightly larger than EOM_DAVIDSON_CONVERGENCE.
EOM_DAVIDSON_MAXVECTORS
EOM_DAVIDSON_MAXVECTORS
Specifies maximum number of vectors in the subspace for the Davidson
diagonalization.
TYPE:
INTEGER
DEFAULT:
60
OPTIONS:
Up to vectors per root before the subspace is reset
RECOMMENDATION:
Larger values increase disk storage but accelerate and stabilize convergence.
EOM_DAVIDSON_MAX_ITER
EOM_DAVIDSON_MAX_ITER
Maximum number of iteration allowed for Davidson diagonalization procedure.
TYPE:
INTEGER
DEFAULT:
30
OPTIONS:
User-defined number of iterations
RECOMMENDATION:
Default is usually sufficient
EOM_IPEA_FILTER
EOM_IPEA_FILTER
If TRUE, filters the EOM-IP/EA amplitudes obtained using the diffuse
orbital implementation (see EOM_FAKE_IPEA). Helps with convergence.
TYPE:
LOGICAL
DEFAULT:
FALSE (EOM-IP or EOM-EA amplitudes will not be filtered)
OPTIONS:
FALSE, TRUE
RECOMMENDATION:
None
Note: Not available in CCMAN2.
CC_FNO_THRESH
CC_FNO_THRESH
Initialize the FNO truncation and sets the threshold to be used for both cutoffs (OCCT and POVO).
TYPE:
INTEGER
DEFAULT:
None
OPTIONS:
range
0000-10000
Corresponding to %
RECOMMENDATION:
None
CC_FNO_USEPOP
CC_FNO_USEPOP
Selection of the truncation scheme.
TYPE:
INTEGER
DEFAULT:
1
OCCT
OPTIONS:
0
POVO
RECOMMENDATION:
None
SCALE_NUCLEAR_CHARGE
SCALE_NUCLEAR_CHARGE
Scales charge of each nuclei by a certain value. The nuclear repulsion energy
is calculated for the unscaled nuclear charges.
TYPE:
INTEGER
DEFAULT:
0
No scaling.
OPTIONS:
A total positive charge of (1+)e is added to the molecule.
RECOMMENDATION:
NONE
ADD_CHARGED_CAGE
ADD_CHARGED_CAGE
Add a point charge cage of a given radius and total charge.
TYPE:
INTEGER
DEFAULT:
0
No cage.
OPTIONS:
0
No cage.
1
Dodecahedral cage.
2
Spherical cage.
RECOMMENDATION:
Spherical cage is expected to yield more accurate results, especially for small radii.
CAGE_RADIUS
CAGE_RADIUS
Defines radius of the charged cage.
TYPE:
INTEGER
DEFAULT:
225
OPTIONS:
radius is Å.
RECOMMENDATION:
None
CAGE_POINTS
CAGE_POINTS
Defines number of point charges for the spherical cage.
TYPE:
INTEGER
DEFAULT:
100
OPTIONS:
Number of point charges to use.
RECOMMENDATION:
None
CAGE_CHARGE
CAGE_CHARGE
Defines the total charge of the cage.
TYPE:
INTEGER
DEFAULT:
400
Add a cage charged +4e.
OPTIONS:
Total charge of the cage is a.u.
RECOMMENDATION:
None