X

Search Results

Searching....

10.8 Anharmonic Vibrational Frequencies

10.8.4 Transition-Optimized Shifted Hermite Theory

(September 1, 2024)

So far, every aspect of solving the nuclear wave equation has been considered, except the wave function. Since Schrödinger proposed his equation, the nuclear wave function has traditionally be expressed in terms of Hermite functions, which are designed for the harmonic oscillator case. Recently a modified representation has been presented. 783 Lin C. Y., Gilbert A. T. B., Gill P. M. W.
Theor. Chem. Acc.
(2008), 120, pp. 23.
Link
To demonstrate how this approximation works, we start with a simple example. For a diatomic molecule, the Hamiltonian with up to quartic derivatives can be written as

H^=-122q2+12ω2q2+ηiiiq3+ηiiiiq4 (10.76)

and the wave function is expressed as in Eq. (10.67). Now, if we shift the center of the wave function by σ, which is equivalent to a translation of the normal coordinate q, the shape will still remain the same, but the anharmonic correction can now be incorporated into the wave function. For a ground vibrational state, the wave function is written as

ϕ(0)=(ωπ)14e-ω2(q-σ)2 (10.77)

Similarly, for the first excited vibrational state, we have

ϕ(1)=(4ω3π)14(q-σ)eω2(q-σ)2 (10.78)

Therefore, the energy difference between the first vibrational excited state and the ground state is

ΔETOSH=ω+ηiiii8ω2+ηiiiσ2ω+ηiiiiσ24ω (10.79)

This is the fundamental vibrational frequency from first-order perturbation theory.

Meanwhile, We know from the first-order perturbation theory with an ordinary wave function within a QFF PES, the energy is

ΔEVPT1=ω+ηiiii8ω2 (10.80)

The differences between these two wave functions are the two extra terms arising from the shift in Eq. (10.79). To determine the shift, we compare the energy with that from second-order perturbation theory:

ΔEVPT2=ω+ηiiii8ω2-5ηiii224ω4 (10.81)

Since σ is a very small quantity compared with the other variables, we ignore the contribution of σ2 and compare ΔETOSH with ΔEVPT2, which yields an initial guess for σ:

σ=-512ηiiiω3 (10.82)

Because the only difference between this approach and the ordinary wave function is the shift in the normal coordinate, we call it “transition-optimized shifted Hermite” (TOSH) functions. 783 Lin C. Y., Gilbert A. T. B., Gill P. M. W.
Theor. Chem. Acc.
(2008), 120, pp. 23.
Link
This approximation gives second-order accuracy at only first-order cost.

For polyatomic molecules, we consider Eq. (10.79), and propose that the energy of the ith mode be expressed as:

ΔEiTOSH=ωi+18ωijηiijjωj+12ωijηiijσij+14ωij,kηiijkσijσik (10.83)

Following the same approach as for the diatomic case, by comparing this with the energy from second-order perturbation theory, we obtain the shift as

σij=(δij-2)(ωi+ωj)ηiij4ωiωj2(2ωi+ωj)-kηkkj4ωkωj2 (10.84)