The following two $rem variables must be specified in order to run HF calculations:
METHOD
METHOD
Specifies the exchange-correlation functional.
TYPE:
STRING
DEFAULT:
No default
OPTIONS:
NAME
Use METHOD = NAME, where NAME is one of the following:
HF for Hartree-Fock theory;
one of the DFT methods listed in Section 5.3.5.;
one of the correlated methods listed in Sections 7.10,
7.11, and 7.9;
RECOMMENDATION:
In general, consult the literature to guide your selection. Our recommendations for DFT are indicated
in bold in Section 5.3.5.
BASIS
BASIS
Specifies the basis sets to be used.
TYPE:
STRING
DEFAULT:
No default basis set
OPTIONS:
General, Gen
User defined ($basis keyword required).
Symbol
Use standard basis sets as per Chapter 8.
Mixed
Use a mixture of basis sets (see Chapter 8).
RECOMMENDATION:
Consult literature and reviews to aid your selection.
In addition, the following $rem variables can be used to customize the SCF calculation:
GEN_SCFMAN
GEN_SCFMAN
Use GEN_SCFMAN for the present SCF calculation.
TYPE:
BOOLEAN
DEFAULT:
TRUE
OPTIONS:
FALSE
Use the previous SCF code.
TRUE
Use GEN_SCFMAN.
RECOMMENDATION:
Set to FALSE in cases where features not yet supported by GEN_SCFMAN are needed.
ORBITAL_ENERGY_PREC
ORBITAL_ENERGY_PREC
Obtain additional digits of precision in the orbital energies.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0
Standard printout with 4 decimal digits (in Hartree).
1
5 decimal digits.
2
Scientific notation with 10 digits of precision.
RECOMMENDATION:
Set as desired. Has no effect in cases where the orbital symmetry labels are printed;
use SYM_IGNORE = TRUE if additional precision is needed in such cases.
PRINT_ORBITALS
PRINT_ORBITALS
Prints orbital coefficients with atom labels in analysis part of output.
TYPE:
INTEGER/LOGICAL
DEFAULT:
FALSE
OPTIONS:
FALSE
Do not print any orbitals.
TRUE
Prints occupied orbitals plus 5 virtual orbitals.
NVIRT
Number of virtual orbitals to print.
RECOMMENDATION:
Use true unless more virtual orbitals are desired.
SCF_CONVERGENCE
SCF_CONVERGENCE
SCF is considered converged when the wave function error is less that
. Adjust the value of THRESH at the same
time. (Starting with Q-Chem 3.0, the DIIS error is measured by the maximum error
rather than the RMS error as in earlier versions.)
TYPE:
INTEGER
DEFAULT:
5
For single point energy calculations (including BSSE and XSAPT jobs).
7
For job types NMR, STATPOLAR, DYNPOLAR, HYPERPOLAR, and ISSC.
8
For most other job types, including geometry optimization, transition-state search,
vibrational analysis, CIS/TDDFT calculations, correlated wavefunction methods,
energy decomposition analysis (EDA2), etc.
OPTIONS:
User-defined
RECOMMENDATION:
Tighter criteria for geometry optimization and vibration analysis. Larger
values provide more significant figures, at greater computational cost.
UNRESTRICTED
UNRESTRICTED
Controls the use of restricted or unrestricted orbitals.
TYPE:
LOGICAL
DEFAULT:
FALSE
Closed-shell systems.
TRUE
Open-shell systems.
OPTIONS:
FALSE
Constrain the spatial part of the alpha and beta orbitals to be the same.
TRUE
Do not Constrain the spatial part of the alpha and beta orbitals.
RECOMMENDATION:
Use the default unless ROHF is desired. Note that for unrestricted calculations on
systems with an even number of electrons it is usually necessary to break
/ symmetry in the initial guess, by using SCF_GUESS_MIX or
providing $occupied information (see Section 4.4 on initial guesses).
The calculations using other more special orbital types are controlled by the following $rem variables (they are not effective if GEN_SCFMAN = FALSE):
OS_ROSCF
OS_ROSCF
Run an open-shell singlet ROSCF calculation with GEN_SCFMAN.
TYPE:
BOOLEAN
DEFAULT:
FALSE
OPTIONS:
TRUE
OS_ROSCF calculation is performed.
FALSE
Do not run OS_ROSCF (it will run a close-shell RSCF calculation instead).
RECOMMENDATION:
Set to TRUE if desired.
GHF
GHF
Run a generalized Hartree-Fock calculation with GEN_SCFMAN.
TYPE:
BOOLEAN
DEFAULT:
FALSE
OPTIONS:
TRUE
Run a GHF calculation.
FALSE
Do not use GHF.
RECOMMENDATION:
Set to TRUE if desired.
COMPLEX
COMPLEX
Run an SCF calculation with complex MOs using GEN_SCFMAN.
TYPE:
BOOLEAN
DEFAULT:
FALSE
OPTIONS:
TRUE
Use complex orbitals.
FALSE
Use real orbitals.
RECOMMENDATION:
Set to TRUE if desired.
COMPLEX_MIX
COMPLEX_MIX
Mix a certain percentage of the real part of the HOMO to the
imaginary part of the LUMO.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0–100
The mix angle = COMPLEX_MIX/100.
RECOMMENDATION:
It may help find the stable complex solution (similar idea as SCF_GUESS_MIX).
$molecule 0 1 H -0.940372 0.000000 1.268098 H 0.940372 0.000000 1.268098 C 0.000000 0.000000 0.682557 O 0.000000 0.000000 -0.518752 $end $rem GEN_SCFMAN true METHOD wb97x-d BASIS def2-svpd THRESH 14 SCF_CONVERGENCE 9 point_group_symmetry False $end @@@ $molecule read $end $rem JOBTYPE sp METHOD wb97x-d BASIS def2-svpd GEN_SCFMAN true OS_ROSCF true THRESH 14 SCF_CONVERGENCE 9 SCF_ALGORITHM diis point_group_symmetry False SCF_GUESS read $end