The following three assignments are necessary in order to run a CAP-AIMD simulation:
JOBTYPE = AIMD in $rem,
COMPLEX_CCMAN = TRUE in $rem (see Section 7.10.9), and
CS_HF = 1 in $complex_ccman (see Section 7.10.9).
For now, CAP-AIMD simulations are possible only with the cuboid CAP type, so setting CAP_TYPE = 1 is also necessary in the $complex_ccman section (see Section 7.10.9).
With CAP-AIMD simulations, one gets two additional files in the AIMD directory (§9.9.2):
CAP_EComponents: Records for each step the total complex energy, the CAP-corrected total complex energy, and the real and imaginary parts of the CAP contribution to the total complex energy – all in atomic units (a.u.).
CAP_PositionAndWidth: Records for each step the total complex energy (in a.u.) and the resonance width (in electron-Volt).
CAP_AIMD_SWITCH
CAP_AIMD_SWITCH
Sets CAP_ETA to zero during a CAP-AIMD simulation when the real part of the last alpha occupied orbital’s energy is negative
TYPE:
LOGICAL
DEFAULT:
TRUE
OPTIONS:
TRUE
Set CAP_ETA to zero when the real part of the last alpha occupied orbital’s becomes negative.
FALSE
Keep user’s CAP_ETA constant throughout simulation.
RECOMMENDATION:
Use default.
CS_STRICT
CS_STRICT
Determines Mulliken charges, multipole moments and complex orbital energies for CAP-HF calculations by reading, when applicable, complex density matrix or complex molecular orbital coefficient file
TYPE:
LOGICAL
DEFAULT:
FALSE
OPTIONS:
TRUE
determine Mulliken charges, multipole moments and complex orbital energies for CAP-HF calculations by reading – when applicable – the complex density matrix or complex molecular orbital coefficient file.
FALSE
Don’t read the complex density matrix or complex molecular orbital coefficient file when determining Mulliken charges, multipole moments and orbital energies for CAP-HF calculations.
RECOMMENDATION:
Set to ‘TRUE’ for CAP-HF calculations.
SKIP_OLD_SCFMAN
SKIP_OLD_SCFMAN
Skips only old SCF drivers
TYPE:
LOGICAL
DEFAULT:
FALSE
OPTIONS:
TRUE
Skip only old SCF drivers
FALSE
Do not skip old SCF drivers
RECOMMENDATION:
When performing CAP calculations on temporary anions, it may help setting this variable to FALSE.
CS_SCF_FINAL_PRINT
CS_SCF_FINAL_PRINT
Controls level of output from CAP-SCF procedure.
TYPE:
INTEGER
DEFAULT:
0
No extra print out.
OPTIONS:
1
Print direct breakdown of CAP-SCF energy.
2
Print breakdown of CAP-SCF energy based on the complex coefficient matrix.
Also required if the options below are requested.
3
Level 2 plus diagonal elements of complex orbital energy matrix, F. Triggered by Level 2.
4
Level 2 plus diagonal elements of complex kinetic energy matrix, T. Triggered by Level 2
5
Level 2 plus diagonal elements of complex electron-nuclear Coulomb potential energy matrix, V. Triggered by Level 2.
6
Level 2 plus diagonal elements of CAP matrix, W. Triggered by Level 2.
7
Level 2 plus diagonal elements of total complex one-electron energy matrix, . Triggered by Level 2.
8
Level 2 plus diagonal elements of total complex electronic energy matrix, . Triggered by Level 2.
9
Level 2 to 8. Triggered by Level 2.
RECOMMENDATION:
Level 1 is usually enough. Values for this $rem variable are transformed first into a set of distinct values;
thus, for example, “1111” is equivalent to “1” and “28224” is equivalent to “248”.
To request Levels 3–9, please remember to request Level 2 as well.
$molecule -1 2 N N 1 1.098 $end $rem ¯JOBTYPE¯¯SP ¯METHOD¯¯¯hf ¯BASIS¯¯¯general ¯GEN_SCFMAN¯¯TRUE ¯SKIP_OLD_SCFMAN¯true¯! skip old scfman drivers ¯SCF_CONVERGENCE¯8 ¯SCF_GUESS¯¯CORE ¯COMPLEX_CCMAN¯¯TRUE ¯UNRESTRICTED¯¯TRUE ¯CS_STRICT¯¯TRUE¯! Determine orbital energies and props. using the complex density matrix/complex MO coefficients ¯CS_SCF_FINAL_PRINT¯1111¯! Print summary of energy decomposition $end $complex_ccman ¯CS_HF ¯¯¯1 ¯CAP_TYPE ¯¯1 ¯CAP_ETA ¯¯420 ¯CAP_X ¯¯¯3535 ¯CAP_Y ¯¯¯3535 ¯CAP_Z ¯¯¯8102 $end $basis N 0 S 7 1.00 11420. 0.00052898 1712. 0.00409115 389.3 0.02101161 110.0 0.08163835 35.57 0.23564992 12.54 0.43792615 4.644 0.35006007 S 7 1.00 11420. 0.00000185 1712. 0.00000699 110.0 -0.00073647 35.57 -0.00718168 12.54 -0.04679022 4.644 -0.12512392 0.5118 0.78627029 S 1 1.00 1.293 1.000000 S 1 1.00 0.1787 1.000000 P 3 1.00 26.63 0.014670 5.948 0.091764 1.742 0.298683 P 1 1.00 0.5550 1.000000 P 1 1.00 0.1725 1.000000 D 1 1.00 1.654 1.000000 D 1 1.00 0.469 1.000000 F 1 1.00 1.093 1.000000 ¯P 1 1.00 ¯¯0.08625 1.000000 ¯P 1 1.00 ¯¯0.043125 1.000000 ¯P 1 1.00 ¯¯0.0215625 1.000000 **** $end
$molecule -1 2 N N 1 1.098 $end $rem JOBTYPE¯¯AIMD METHOD¯¯¯HF BASIS¯¯¯GENERAL GEN_SCFMAN¯¯TRUE SKIP_OLD_SCFMAN¯TRUE¯¯! Skip old scfman drivers SCF_CONVERGENCE¯8 MAX_SCF_CYCLES¯¯200 SCF_GUESS¯¯CORE COMPLEX_CCMAN¯¯TRUE¯¯! Activate Complex CCMAN. Necessary for CAP calculations. UNRESTRICTED¯¯TRUE TIME_STEP¯¯10 AIMD_STEPS¯¯200 FOCK_EXTRAP_ORDER 0 FOCK_EXTRAP_POINTS 0 AIMD_MOMENTS¯¯1 AIMD_TEMP¯¯300 AIMD_INIT_VELOC¯THERMAL CAP_AIMD_SWITCH¯TRUE¯¯! Set CAP_ETA=0 when extra electron is bound CS_STRICT¯¯TRUE¯¯! Determine orbital energies and props. using the complex density. matrix/complex MO coefficients INTEGRAL_SYMMETRY FALSE POINT_GROUP_SYMMETRY FALSE $end $complex_ccman ¯CS_HF ¯¯¯1¯¯! Do complex HF ¯CAP_TYPE ¯¯1¯¯! CAP type is cuboid. ¯CAP_ETA ¯¯420 ¯CAP_X ¯¯¯3535 ¯CAP_Y ¯¯¯3535 ¯CAP_Z ¯¯¯8102 $end $basis N 0 S 7 1.00 11420. 0.00052898 1712. 0.00409115 389.3 0.02101161 110.0 0.08163835 35.57 0.23564992 12.54 0.43792615 4.644 0.35006007 S 7 1.00 11420. 0.00000185 1712. 0.00000699 110.0 -0.00073647 35.57 -0.00718168 12.54 -0.04679022 4.644 -0.12512392 0.5118 0.78627029 S 1 1.00 1.293 1.000000 S 1 1.00 0.1787 1.000000 P 3 1.00 26.63 0.014670 5.948 0.091764 1.742 0.298683 P 1 1.00 0.5550 1.000000 P 1 1.00 0.1725 1.000000 D 1 1.00 1.654 1.000000 D 1 1.00 0.469 1.000000 F 1 1.00 1.093 1.000000 ¯P 1 1.00 ¯¯0.08625 1.000000 ¯P 1 1.00 ¯¯0.043125 1.000000 ¯P 1 1.00 ¯¯0.0215625 1.000000 **** $end
$molecule -1 2 C 0.0000 0.0000 0.0000 H 0.0000 0.0000 1.0742 H 0.9596 0.0000 -0.4829 C -1.1191 0.0000 -0.6897 H -2.0787 0.0000 -0.2068 H -1.1191 0.0000 -1.7639 $end $rem METHOD¯¯¯HF BASIS¯¯¯GENERAL GEN_SCFMAN¯¯TRUE SKIP_OLD_SCFMAN¯TRUE¯! skip old scfman drivers SCF_CONVERGENCE¯8 SCF_GUESS¯¯CORE COMPLEX_CCMAN¯¯TRUE UNRESTRICTED¯¯TRUE CS_STRICT¯¯TRUE¯! Determine orbital energies and props. using the complex density matrix/complex MO coefficients CS_SCF_FINAL_PRINT¯1111¯! Print summary of energy decomposition INTEGRAL_SYMMETRY ¯FALSE POINT_GROUP_SYMMETRY¯FALSE $end $complex_ccman CS_HF ¯¯¯1 CAP_TYPE ¯¯1 CAP_ETA ¯¯230 CAP_X ¯¯¯4360 CAP_Y ¯¯¯2680 CAP_Z ¯¯¯4360 $end $basis H¯0 cc-pvtz **** C 0 S 8 1.00 8236.0000000 0.0005310 1235.0000000 0.0041080 280.8000000 0.0210870 79.2700000 0.0818530 25.5900000 0.2348170 8.9970000 0.4344010 3.3190000 0.3461290 0.3643000 -0.0089830 S 8 1.00 8236.0000000 -0.0001130 1235.0000000 -0.0008780 280.8000000 -0.0045400 79.2700000 -0.0181330 25.5900000 -0.0557600 8.9970000 -0.1268950 3.3190000 -0.1703520 0.3643000 0.5986840 S 1 1.00 11.8760000 1.0000000 S 1 1.00 4.2920000 1.0000000 S 1 1.00 0.9059000 1.0000000 S 1 1.00 0.1285000 1.0000000 P 3 1.00 18.7100000 0.0140310 4.1330000 0.0868660 1.2000000 0.2902160 P 1 1.00 33.1900000 1.0000000 P 1 1.00 8.7780000 1.0000000 P 1 1.00 0.3827000 1.0000000 P 1 1.00 0.1209000 1.0000000 D 1 1.00 14.8390000 1.0000000 D 1 1.00 1.0970000 1.0000000 D 1 1.00 0.3180000 1.0000000 F 1 1.00 0.7610000 1.0000000 P¯1¯¯1.00 ¯¯0.06045¯1.00 P¯1¯¯1.00 ¯¯0.030225¯1.00 P¯1¯¯1.00 ¯¯0.0151125¯1.00 **** $end @@@ $molecule READ $end $velocity 3.6095e-05 4.1623e-06 2.3754e-05 -9.7386e-04 -1.4552e-05 -1.2310e-03 -2.8737e-04 1.2165e-04 2.9068e-04 3.3619e-05 -1.3939e-04 1.0849e-04 6.4312e-04 2.0187e-04 -4.2066e-04 -2.1196e-04 1.3012e-03 -2.1364e-04 $end $rem ¯JOBTYPE¯¯AIMD ¯METHOD¯¯¯HF ¯BASIS¯¯¯GENERAL ¯GEN_SCFMAN¯¯TRUE ¯SKIP_OLD_SCFMAN¯TRUE ¯SCF_CONVERGENCE¯8 ¯MAX_SCF_CYCLES¯¯3000 integral_symmetry FALSE point_group_symmetry False ¯SCF_GUESS¯¯READ ¯COMPLEX_CCMAN¯¯TRUE ¯UNRESTRICTED¯¯TRUE ¯MOM_START¯¯1 ¯MOM_METHOD¯¯MOM ¯TIME_STEP¯¯2 ¯AIMD_STEPS¯¯200 ¯FOCK_EXTRAP_ORDER 0 ¯FOCK_EXTRAP_POINTS 0 ¯AIMD_MOMENTS¯¯1 ¯AIMD_PRINT¯¯2¯! Print Mulliken charges and dipole moments at each step ¯CS_STRICT¯¯TRUE $end $complex_ccman ¯CS_HF ¯¯¯1 ¯CAP_TYPE ¯¯1 ¯CAP_ETA ¯¯230 ¯CAP_X ¯¯¯4360 ¯CAP_Y ¯¯¯2680 ¯CAP_Z ¯¯¯4360 $end $basis H¯0 cc-pvtz **** C 0 S 8 1.00 8236.0000000 0.0005310 1235.0000000 0.0041080 280.8000000 0.0210870 79.2700000 0.0818530 25.5900000 0.2348170 8.9970000 0.4344010 3.3190000 0.3461290 0.3643000 -0.0089830 S 8 1.00 8236.0000000 -0.0001130 1235.0000000 -0.0008780 280.8000000 -0.0045400 79.2700000 -0.0181330 25.5900000 -0.0557600 8.9970000 -0.1268950 3.3190000 -0.1703520 0.3643000 0.5986840 S 1 1.00 11.8760000 1.0000000 S 1 1.00 4.2920000 1.0000000 S 1 1.00 0.9059000 1.0000000 S 1 1.00 0.1285000 1.0000000 P 3 1.00 18.7100000 0.0140310 4.1330000 0.0868660 1.2000000 0.2902160 P 1 1.00 33.1900000 1.0000000 P 1 1.00 8.7780000 1.0000000 P 1 1.00 0.3827000 1.0000000 P 1 1.00 0.1209000 1.0000000 D 1 1.00 14.8390000 1.0000000 D 1 1.00 1.0970000 1.0000000 D 1 1.00 0.3180000 1.0000000 F 1 1.00 0.7610000 1.0000000 P¯1¯¯1.00 ¯¯0.06045¯1.00 P¯1¯¯1.00 ¯¯0.030225¯1.00 P¯1¯¯1.00 ¯¯0.0151125¯1.00 **** $end