The simplest implicit solvation model available in Q-Chem is the
multipolar expansion model,
653
J. Chem. Phys.
(1934),
2,
pp. 767.
Link
,
887
J. Chem. Phys.
(1988),
89,
pp. 3086.
Link
,
529
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(2021),
11,
pp. e1519.
Link
which has also been called the Kirkwood-Onsager model or sometimes the generalized Kirkwood
model.
529
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(2021),
11,
pp. e1519.
Link
In this approach, the solute is placed inside of a spherical cavity of radius that is surrounded by a
homogeneous dielectric medium whose dielectric constant is , and these constitute the only
parameters of the model. The term Onsager model is sometimes synonymous with a point-dipole
approximation for the solute’s charge density, but Q-Chem’s version uses a single-center multipole
expansion of the density (which can be extended to arbitrarily high order), in order to obtain an essentially
exact description of the solute’s electrostatic potential. The model then consists of using Kirkwood’s
analytic expressions for the solvation energy of each spherical harmonic function, in a spherical cavity inside
of a dielectric continuum.
529
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(2021),
11,
pp. e1519.
Link
Regarding the cavity radius , Onsager’s original suggestion is based on the molar volume of the pure solute,
(11.1) |
where is Avogadro’s constant. This was later shown to be a poor choice in the context of
modern quantum chemistry calculations.
529
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(2021),
11,
pp. e1519.
Link
It is also common to add 0.5 Å to the value of in Eq. (11.1) in
order to account for the first solvation shell,
1386
J. Am. Chem. Soc.
(1991),
113,
pp. 4776.
Link
or to set equal to
the maximum distance between the solute center of
mass and the solute atoms, plus the relevant van der Waals radii. A third
option is to set (the cavity diameter) equal to the largest
solute–solvent internuclear distance, plus the van der Waals radii of the relevant atoms.
Clearly, there is quite a bit of arbitrariness in this choice and solvation energies are quite
sensitive to the value of ,
529
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(2021),
11,
pp. e1519.
Link
and the PCMs that are described in
Section 11.2.3 have largely made the multipolar expansion method obsolete, since
the PCMs employ the exact electron density and can be used (if desired) with a spherical cavity,
although the more typical choice is a molecule-shaped van der Waals cavity.
The Kirkwood-Onsager SCRF is requested by setting SOLVENT_METHOD = KIRKWOOD in the $rem section. Some additional options can be specified in the $solvent section, as described below, of which only CavityRadius is required. Energies and analytic gradients for the Kirkwood-Onsager solvent model are available for Hartree-Fock, DFT, and CCSD calculations. It is often advisable to perform a gas-phase calculation of the solute molecule first, which can serve as the initial guess for a subsequent Kirkwood-Onsager implicit solvent calculation. For coupled-cluster calculations using this model, one may set CC_SAVEAMPL = TRUE to retain the CC amplitudes from the gas-phase calculation, which will save some time in the subsequent solution-phase calculation.
Note: For CCSD calculations the Kirkwood-Onsager model works only with CCMAN2 = FALSE.
The following job-control options belong in the $solvent section, not the $rem section. As with other parts of the Q-Chem input file, this input section is not case-sensitive.
CavityRadius
Sets the radius of the spherical solute cavity.
INPUT SECTION: $solvent
TYPE:
FLOAT
DEFAULT:
No default.
OPTIONS:
Cavity radius in Å.
RECOMMENDATION:
None
Dielectric
Sets the dielectric constant of the solvent continuum.
INPUT SECTION: $solvent
TYPE:
FLOAT
DEFAULT:
78.39
OPTIONS:
Use a (dimensionless) value of .
RECOMMENDATION:
The default value corresponds to water at 25C.
MultipoleOrder
Determines the order to which the multipole expansion of the solute charge
density is carried out.
INPUT SECTION: $solvent
TYPE:
INTEGER
DEFAULT:
15
OPTIONS:
Include up to th order multipoles.
RECOMMENDATION:
Use the default. The multipole expansion is usually converged by order = 15.
$molecule 0 1 O 0.00000000 0.00000000 0.11722303 H -0.75908339 0.00000000 -0.46889211 H 0.75908339 0.00000000 -0.46889211 $end $rem METHOD HF BASIS 6-31g** SOLVENT_METHOD Kirkwood $end $solvent CavityRadius 1.8 ! 1.8 Angstrom Solute Radius Dielectric 35.9 ! Acetonitrile MultipoleOrder 15 ! this is the default value $end
$molecule 0 1 H 0.000000 0.000000 -0.862674 F 0.000000 0.000000 0.043813 $end $rem METHOD HF BASIS 6-31G* $end @@@ $molecule read $end $rem JOBTYPE FORCE METHOD HF BASIS 6-31G* SOLVENT_METHOD KIRKWOOD SCF_GUESS READ ! read vacuum solution as a guess $end $solvent CavityRadius 2.5 $end