X

Search Results

Searching....

11.5 Effective Fragment Potential Method

11.5.11 Examples

(September 1, 2024)

Example 11.27  Basic EFP-only calculation of benzene dimer in XYZ input format. EFP parameters are read from the fragment library ($QCAUX/fraglib).

$comment
   Pure EFP energy computation on benzene dimer
$end

$molecule
   0 1
   He       5.0    5.0    5.0
$end

$rem
   METHOD               hf
   BASIS                6-31G(d)
   EFP_FRAGMENTS_ONLY   true
   EFP_DISP_DAMP        1
   EFP_COORD_XYZ        1
   PURECART             2222
$end

$efp_fragments
BENZENE_L
   A01C   -0.07088   -2.35729    1.06421
   A02C    0.75298   -3.00688    0.16337
   A03C    0.51391   -2.89905   -1.19436
BENZENE_L
   A01C   -1.72945    1.38131   -0.01219
   A02C   -0.47330    1.37787   -0.59037
   A03C    0.65547    1.37017    0.20840
$end

Example 11.28  Basic EFP-only calculation of benzene dimer in Euler angle input format with new EFPMAN2 module. EFP parameters are read from the fragment library ($QCAUX/fraglib).

$molecule
   0 1
   He       5.0    5.0    5.0
$end

$rem
   METHOD               hf
   BASIS                6-31G(d)
   EFP_FRAGMENTS_ONLY   true
   EFP_DISP_DAMP        1
   PURECART             2222
$end

$efp_fragments
   BENZENE_L -0.30448173 -2.24210052 -0.29383131 -0.642499 1.534222 -0.568147
   BENZENE_L -0.60075437  1.36443336  0.78647823  3.137879 1.557344 -2.568550
$end

Example 11.29  QM/MM computation of one water molecule in QM part and one water + two ammonia molecules in EFP part. EFP parameters are read from the fragment library ($QCAUX/fraglib).

$molecule
   0 1
   O   0.0000      0.0000      0.2243
   H  -1.4233      0.0000     -0.8973
   H   1.4233      0.0000     -0.8973
$end

$rem
   METHOD          hf
   BASIS           6-31G(d)
   EFP_DISP_DAMP   1
   PURECART        2222
$end

$efp_fragments
   WATER_L   -2.12417561  1.22597097 -0.95332054 -2.902133 1.734999 -1.953647
   AMMONIA_L  1.04358758  1.90477190  2.88279926 -1.105309 2.033306 -1.488582
   AMMONIA_L -4.16795656 -0.98129149 -1.27785935  2.526442 1.658262 -2.742084
$end

Example 11.30  EOM-IP-CCSD/EFP calculation; CN radical hydrated by 6 waters.

$comment
   EOM-IP/EFP; CN radical hydrated by 6 waters
   all active orbitals and frozen core are tested
$end

$molecule
   -1 1
    C   1.004122   2.504092  -0.325463
    N   0.816221   2.319773   0.780625
$end

$rem
   METHOD               eom-ccsd
   BASIS                6-31+G*
   EFP_FRAGMENTS_ONLY   false
   PURECART             2222
   SCF_CONVERGENCE      8
   IP_STATES            4
   EFP                  1
   EOM_FAKE_IPEA        true
   CCMAN2               false
   EFP_EXREP            0
$end

$efp_fragments
   WATER_L 1.12736608 -1.43556954 -0.73517708 -1.45590530  2.99520330  0.11722720
   WATER_L 1.25577919  0.62068648 -2.69876653  2.56168924  1.26470722  0.33910203
   WATER_L 3.76006184 -1.03358049  0.45980636 -1.53852111  2.58787281 -1.98107746
   WATER_L 4.81593067  2.87535152 -0.24524178 -1.86802100  0.73283467 -2.17837806
   WATER_L 4.07402278  0.74020006 -1.92695949  2.21177738  1.69303397 -2.30505848
   WATER_L 3.60104027  1.35547341  1.88776964  0.43895304  1.25442317  1.07742578
$end

Example 11.31  Excited states of formaldehyde with 6 EFP water molecules by CIS(D).

$molecule
   0 1
   C1    1.063245   2.026797   0.433887
   O2    1.115445   1.079872   1.154242
   H3    1.094466   3.039490   0.836046
   H4    0.983660   1.924177  -0.645223
$end

$rem
   METHOD               cis(d)
   BASIS                6-31+G*
   EFP_FRAGMENTS_ONLY   false
   PURECART             2222
   UNRESTRICTED         true
   SCF_CONVERGENCE      8
   CIS_N_ROOTS          4
   EFP                  1
   MEM_STATIC           256
   AO2MO_DISK           1000
$end

$efp_fragments
   WATER_L 1.45117729 -1.31271387 -0.39790305 -1.075756  2.378141  1.029199
   WATER_L 1.38370965  0.22282733 -2.74327999  2.787663  1.446660  0.168420
   WATER_L 4.35992117 -1.31285676  0.15919381 -1.674869  2.547933 -2.254831
   WATER_L 4.06184149  2.79536141  0.05055916 -1.444143  0.750463 -2.291224
   WATER_L 4.09898096  0.83731430 -1.93049301  2.518412  1.592607 -2.199818
   WATER_L 3.96160175  0.71581837  2.05653146  0.825946  1.414384  0.966187
$end

Example 11.32  Fragment pairwise excitation energy decomposition analysis of the first excited state of formaldehyde solvated by two water molecules. TDDFT/EFP

$comment
fragment pairwise excitation energy decomposition analysis
efp_pairwise=1 initiates the analysis
efp_order=1 computes electrostatic contribution to solvatochromic shift
efp_order=2 computes solute and solvent polarization components to solvatochromic shift
results of efp_order=1 job are needed for a proper analysis of efp_order=2 results
$end

$molecule
0 1
          C       0.524512     0.000804     0.000092
          O      -0.666413     0.000723    -0.000022
          H       1.085163    -0.934036    -0.000186
          H       1.099066     0.923427    -0.000188
$end

$rem
exchange = wb97x
basis 6-31+G*
cis_n_roots 1
cis_triplets = false
jobtype sp
efp_pairwise = 1
efp_order = 1
efp_coord_xyz = 1
point_group_symmetry False
$end

$efp_fragments
water_l
A01O1  -1.815220   2.663988  -0.023113
A02H2  -1.617480   1.725461   0.001936
A03H3  -2.476026   2.736906  -0.714908
water_l
A01O1   0.990542   3.342755  -0.406837
A02H2   1.243548   4.121277   0.093615
A03H3   0.036378   3.313023  -0.310676
$end

@@@

$comment
efp_order=2 computes solute and solvent polarization components to solvatochromic shift
$end

$molecule
READ
$end

$rem
exchange = wb97x
basis 6-31+G*
jobtype sp
cis_n_roots 1
cis_triplets = false
efp_pairwise = 1
efp_order = 2
efp_coord_xyz = 1
point_group_symmetry False
$end

$efp_fragments
water_l
A01O1  -1.815220   2.663988  -0.023113
A02H2  -1.617480   1.725461   0.001936
A03H3  -2.476026   2.736906  -0.714908
water_l
A01O1   0.990542   3.342755  -0.406837
A02H2   1.243548   4.121277   0.093615
A03H3   0.036378   3.313023  -0.310676
$end


Example 11.33  Fragment pairwise excitation energy decomposition analysis of the first excited state of formaldehyde solvated by two water molecules. EOM-CCSD/EFP via ccman2

$comment
fragment pairwise excitation energy decomposition analysis
efp_pairwise=1 initiates the analysis
efp_order=1 computes electrostatic contribution to solvatochromic shift
$end

$molecule
0 1
          C       0.524512     0.000804     0.000092
          O      -0.666413     0.000723    -0.000022
          H       1.085163    -0.934036    -0.000186
          H       1.099066     0.923427    -0.000188
$end

$rem
method eom-ccsd
ee_singlets  2
ccman2 true
exchange = hf
basis 6-31+G*
jobtype sp
efp_pairwise = 1
efp_order = 1
efp_coord_xyz = 1
point_group_symmetry False
$end

$efp_fragments
water_l
A01O1  -1.815220   2.663988  -0.023113
A02H2  -1.617480   1.725461   0.001936
A03H3  -2.476026   2.736906  -0.714908
water_l
A01O1   0.990542   3.342755  -0.406837
A02H2   1.243548   4.121277   0.093615
A03H3   0.036378   3.313023  -0.310676
$end

@@@

$comment
efp_order=2 computes polarization contributions to solvatochromic shift
$end

$molecule
READ
$end

$rem
method eom-ccsd
ee_singlets  2
ccman2 true
exchange = hf
basis 6-31+G*
jobtype sp
efp_pairwise = 1
efp_order = 2
efp_coord_xyz = 1
point_group_symmetry False
$end

$efp_fragments
water_l
A01O1  -1.815220   2.663988  -0.023113
A02H2  -1.617480   1.725461   0.001936
A03H3  -2.476026   2.736906  -0.714908
water_l
A01O1   0.990542   3.342755  -0.406837
A02H2   1.243548   4.121277   0.093615
A03H3   0.036378   3.313023  -0.310676
$end