X

Search Results

Searching....

12.6 Second-Generation ALMO-EDA Method

12.6.8 ALMO-EDA with Non-Perturbative Polarization and Charge Transfer Analysis

(September 1, 2024)

Q-Chem also supports the non-perturbative 1302 Veccham S. P. et al.
Phys. Chem. Chem. Phys.
(2021), 23, pp. 928.
Link
(variational) energy and charge decomposition analysis in the second-generation ALMO-EDA framework. The advantage of this method over the perturbative CT analysis method is that the energy and charge decompositions are both exact and there are no higher-order terms left. Currently, this method is implemented for both restricted and unrestricted SCF calculations, and is eligible to analyze both polarization 1164 Shen H., Veccham S. P., Head-Gordon M.
J. Chem. Theory Comput.
(2023), 19, pp. 8624.
Link
(POL) and charge transfer (CT) processes of intermolecular interactions.

12.6.8.1 Non-Perturbative Polarization and Charge Transfer Analysis with the GEN_SCFMAN_EDA2 Driver

The non-perturbative polarization and charge transfer analysis can be performed using the GEN_SCFMAN_EDA2 driver (GEN_SCFMAN_EDA2 = TRUE). Perturbative CT analysis can be invoked by setting EDA_PCT_A = TRUE, while non-perturbative POL and CT analysis can be invoked by setting EDA_POL_A = TRUE and EDA_VCT_A = TRUE, respectively. The POL analysis 1164 Shen H., Veccham S. P., Head-Gordon M.
J. Chem. Theory Comput.
(2023), 19, pp. 8624.
Link
uses the recently developed fragment density matrix connecting method and can break the energy lowering and charge shift in the POL process into exactly fragment-wise additive sums. The CT analysis will print out the pairwise energy and charge changes between fragments as matrices, with fragment labels starting from 0, and the interpretation is that the energy lowering and charge transfer happens due to electron donation from the fragments labeled in the rows to the fragments labeled in the columns.

The default orbital analysis method is the complementary occupied-virtual pairs (COVP) method. To select the significant COVPs, set EDA_COVP_THRESH = N to print out the COVPs that contributes more than 0.001×N kJ/mol to the energy decrease, and the default value is set to 500. To visualize the COVPs, set EDA_SAVE_COVP = TRUE, MAKE_CUBE_FILES = TRUE and PLOTS = TRUE to save the orbitals as cube files, which can be visualized using IQmol, VMD, or other visualization software. The natural orbitals for chemical valence (NOCV) analysis can also be performed by setting EDA_NOCV = TRUE. To select the significant NOCVs, set EDA_NOCV_THRESH = N to print out NOCVs that contributes more than 0.001×N kJ/mol to energy decrease, and the default value is also set to 500. The NOCV analysis includes the POL process, CT process, and the traditional NOCV results which combine the POL and CT processes. As pointed out in this paper 1165 Shen H., Wang Z., Head-Gordon M.
J. Chem. Theory Comput.
(2022), 18, pp. 7428.
Link
, the ETS-NOCV method approximates the effective Fock matrix integration with only one quadrature, which is set by EDA_NOCV_QUADRATURE =1, and Q-Chem also supports quadrature number 3 and 5.

Unrestricted analysis will be used if at least one of the fragments has an open-shell structure. It can also be forced by setting UNRESTRICTED=TRUE. One caveat is that the current implementation does not support the OCC_RI_K algorithm, and the calculation will crash if this REM is set true.

GEN_SCFMAN_EDA2

GEN_SCFMAN_EDA2
       Perform ALMO-EDA calculations using the GEN_SCFMAN_EDA2 driver (differing from jobs with EDA2 > 0)
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not use the new ALMO-EDA framework TRUE Use the new ALMO-EDA framework
RECOMMENDATION:
       Set to TRUE to perform non-perturbative CT analysis using this driver

EDA_PCT_A

EDA_PCT_A
       Perform perturbative CT analysis
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not perform perturbative CT analysis TRUE Perform perturbative CT analysis
RECOMMENDATION:
       Set to TRUE to perform perturbative CT analysis

EDA_VCT_A

EDA_VCT_A
       Perform non-perturbative CT analysis
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not perform non-perturbative CT analysis TRUE Perform non-perturbative CT analysis.
RECOMMENDATION:
       Set to TRUE to perform non-perturbative CT analysis

EDA_POL_A

EDA_POL_A
       Perform EDA for polarization process
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not perform EDA for polarization process TRUE Perform EDA for polarization process
RECOMMENDATION:
       Set to TRUE to perform EDA for polarization process

EDA_COVP_THRESH

EDA_COVP_THRESH
       Specifies the significance above which the COVPs will be saved
TYPE:
       INTEGER
DEFAULT:
       500
OPTIONS:
       N COVPs that contributes more than 0.001×N kJ/mol in energy decrease will be saved
RECOMMENDATION:
       None

EDA_SAVE_COVP

EDA_SAVE_COVP
       Save significant COVPs or not
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not save significant COVPs TRUE Save significant COVPs
RECOMMENDATION:
       Set to TRUE to save COVPs. Note that REMs for plotting cube files need also be set

EDA_NOCV

EDA_NOCV
       Perform NOCV analysis
TYPE:
       BOOLEAN
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not do NOCV analysis TRUE Do NOCV analysis
RECOMMENDATION:
       None

EDA_NOCV_THRESH

EDA_NOCV_THRESH
       Specifies the significance above which the NOCVs will be saved
TYPE:
       INTEGER
DEFAULT:
       500
OPTIONS:
       N NOCVs that contributes more than 0.001×N kJ/mol in energy decrease will be saved
RECOMMENDATION:
       None

EDA_SAVE_NOCV

EDA_SAVE_NOCV
       Save significant COVPs or not
TYPE:
       INTEGER
DEFAULT:
       0
OPTIONS:
       0 Do not save significant NOCVs 1 Save significant NOCVs
RECOMMENDATION:
       Set to 1 to save NOCVs. Note REMs for plotting cube files need also be set

EDA_NOCV_QUADRATURE

EDA_NOCV_QUADRATURE
       Number of quadratures used to integrate effective fock matrix
TYPE:
       INTEGER
DEFAULT:
       1
OPTIONS:
       1 Use 1 quadrature 3 Use 3 quadratures 5 Use 5 quadratures
RECOMMENDATION:
       Most of the time, one quadrature is enough. However, in cases where the NOCV energy decreases are very different from the corresponding COVP results, it is recommended to increase the quadrature numbers.

Example 12.20  Restricted EDA calculation for the H2O-Na+ system with non-perturbative POL and CT analysis.

$molecule
1 1
--
0 1
H         -0.73946        0.94887        0.78379
O         -1.16910        0.63297       -0.02844
H         -2.12156        0.70793        0.14730
--
1 1
Na        -0.17266       -0.04338       -1.86190
$end

$comment
EDA2 (R) calculation with variational POL and CT analyses
based on the gen_scfman_eda2 driver
$end

$rem
method               B3LYP
scf_print_frgm       1
gen_scfman_final     1
scf_print_frgm       1
basis                6-31G*
scf_algorithm        diis
thresh               12
incfock              false
mem_total            16000
scf_convergence      7
scf_final_print      2
child_mp             1
child_mp_orders      232 ! nDQ
gen_scfman_eda2      1
eda_pol_a            1
eda_pct_a            0
eda_vct_a            1
eda_covp_thresh      500
eda_save_covp        0
make_cube_files      true
plots                true
point_group_symmetry false
integral_symmetry    false
$end

$plots
 grid_points 50 50 50
$end

Example 12.21  Unrestricted EDA calculation for the CH3-Na+ system with non-perturbative POL and CT analysis.

$molecule
1 2
--
0 2
C¯-1.447596 -0.000023  0.000019
H¯-1.562749  0.330361 -1.023835
H¯-1.561982  0.721445  0.798205
H¯-1.561187 -1.052067  0.225866
--
1 1
Na¯ 1.215591  0.000036 -0.000032
$end

$comment
EDA2 (U) calculation with variational POL and CT analyses
based on the gen_scfman_eda2 driver
$end

$rem
method               B3LYP
scf_print_frgm       true
basis                aug-cc-PVTZ
scf_algorithm        diis
thresh               12
incfock              false
mem_total            16000
scf_convergence      7
child_mp             1
child_mp_orders      232 ! nDQ
gen_scfman_eda2      1
eda_pol_a            1
eda_pct_a            0
eda_vct_a            1
eda_covp_thresh      500
eda_save_covp        0
make_cube_files      true
plots                true
point_group_symmetry false
integral_symmetry    false
$end

$plots
 grid_points 50 50 50
$end

Example 12.22  Unrestricted EDA calculation for the Rn+-CH4 system with non-perturbative POL and CT analysis and NOCV analysis

$molecule
1 2
--
0 1
C         0.0551597051    0.0364080371   -0.0375528310
H        -0.0563410694   -1.0144740143   -0.3153331540
H        -0.0537558345    0.7868509829   -0.8318467516
H        -0.8718690962    0.2438110339    0.5677588397
H         1.0408273042    0.1810559688    0.4109829953
--
1 2
Rn       -0.2646060092    0.6373989916    3.0026329017
$end

$rem
method              b3lyp
gen_scfman_final    1
scf_print_frgm      1
basis               def2-tzvp
ecp                 def2-ecp
scf_algorithm       diis
thresh              12
incfock             0
mem_total           16000
scf_final_print     2
iprint              20000000
scf_convergence     7
child_mp            1
child_mp_orders     232 ! nDQ
gen_scfman_eda2     1
eda_pol_a           1
eda_pct_a           0
eda_vct_a           1
eda_save_covp       0
eda_nocv            1
eda_save_nocv       0
eda_covp_thresh     500
eda_nocv_thresh     500
eda_nocv_quadrature 1
make_cube_files     true
plots               true
point_group_symmetry false
integral_symmetry    false
$end

$plots
 grid_points 100 100 100
$end

12.6.8.2 Non-Perturbative Polarization and Charge Transfer Analysis with the EDA2 Driver

In Q-Chem 6.1 and after, the non-perturbative POL and CT analysis methods are enabled in EDA2 driver so that features available in EDA2 can be used, such as frozen energy decomposition, inclusion of solvation models, etc. A sample input file is shown below.

Example 12.23  Unrestricted EDA calculation for the CH3-Na+ system with non-perturbative POL and CT analysis using the EDA2 driver. The significant COVPs will be plotted.

$molecule
1 2
--
0 2
C   -1.447596 -0.000023  0.000019
H   -1.562749  0.330361 -1.023835
H   -1.561982  0.721445  0.798205
H   -1.561187 -1.052067  0.225866
--
1 1
Na   1.215591  0.000036 -0.000032
$end

$comment
EDA2 (U) calculation with variational POL and CT analyses
based on the eda2 driver
$end

$rem
jobtype              eda
eda2                 1
method               B3LYP
point_group_symmetry false
basis                6-31g*
scf_algorithm        gdm
thresh               12
eda_pol_a            true
eda_vct_a            true
eda_covp_thresh      500
eda_save_covp        true
eda_nocv             true
eda_save_nocv        false
eda_nocv_thresh      500
eda_nocv_quadrature  1
make_cube_files      true
plots                true
$end

$plots
 grid_points 50 50 50
$end