X

Search Results

Searching....

5.3 Overview of Available Functionals

5.3.5 Exchange-Correlation Functionals

(April 13, 2024)

Note:  All exchange-correlation functionals in this section can be invoked using the $rem variable METHOD. For backwards compatibility, all of the exchange-correlation functionals except for the ones marked with an asterisk can be used with the $rem variable EXCHANGE. Popular and/or recommended functionals within each class are listed first and indicated in bold. The rest are in alphabetical order.

  • Local Spin-Density Approximation (LSDA)

    • SPW92*: Slater LSDA exchange + PW92 LSDA correlation

    • LDA: Slater LSDA exchange + VWN5 LSDA correlation

    • SVWN5*: Slater LSDA exchange + VWN5 LSDA correlation

  • Generalized Gradient Approximation (GGA)

    • B97-D3(0): B97-D with a fitted DFT-D3(0) tail instead of the original DFT-D2 tail 430 Grimme S. et al.
      J. Chem. Phys.
      (2010), 132, pp. 154104.
      Link

    • B97-D: 9-parameter dispersion-corrected (DFT-D2) functional by Grimme 437 Grimme S.
      J. Comput. Chem.
      (2006), 27, pp. 1787.
      Link

    • PBE*: PBE GGA exchange + PBE GGA correlation

    • BLYP*: B88 GGA exchange + LYP GGA correlation

    • revPBE*: revPBE GGA exchange + PBE GGA correlation

    • BEEF-vdW: 31-parameter semi-empirical exchange functional developed via a Bayesian error estimation framework paired with PBE correlation and vdW-DF-10 NLC 1298 Wellendorff J. et al.
      Phys. Rev. B
      (2012), 85, pp. 235149.
      Link

    • BOP: B88 GGA exchange + BOP “one-parameter progressive” GGA correlation 1238 Tsuneda T., Suzumura T., Hirao K.
      J. Chem. Phys.
      (1999), 110, pp. 10664.
      Link

    • BP86*: B88 GGA exchange + P86 GGA correlation

    • BP86VWN*: B88 GGA exchange + P86VWN5 GGA correlation

    • BPBE*: B88 GGA exchange + PBE GGA correlation

    • EDF1: Modification of BLYP to give good performance in the 6-31+G* basis set 25 Adamson R. D., Gill P. M. W., Pople J. A.
      Chem. Phys. Lett.
      (1998), 284, pp. 6.
      Link

    • EDF2: Modification of B3LYP to give good performance in the cc-pVTZ basis set for frequencies 749 Lin C. Y., George M. W., Gill P. M. W.
      Aust. J. Chem.
      (2004), 57, pp. 365.
      Link

    • GAM: 21-parameter non-separable gradient approximation functional by Truhlar and coworkers 1371 Yu H. S. et al.
      Phys. Chem. Chem. Phys.
      (2015), 17, pp. 12146.
      Link

    • HCTH93 (HCTH/93): 15-parameter functional trained on 93 systems by Handy and coworkers 455 Hamprecht F. A. et al.
      J. Chem. Phys.
      (1998), 109, pp. 6264.
      Link

    • HCTH120 (HCTH/120): 15-parameter functional trained on 120 systems by Boese et al. 123 Boese A. D. et al.
      J. Chem. Phys.
      (2000), 112, pp. 1670.
      Link

    • HCTH147 (HCTH/147): 15-parameter functional trained on 147 systems by Boese et al. 123 Boese A. D. et al.
      J. Chem. Phys.
      (2000), 112, pp. 1670.
      Link

    • HCTH407 (HCTH/407): 15-parameter functional trained on 407 systems by Boese and Handy 124 Boese A. D., Handy N. C.
      J. Chem. Phys.
      (2001), 114, pp. 5497.
      Link

    • HLE16 – HCTH/407 exchange functional enhanced by a factor of 1.25 + HCTH/407 correlation functional enhanced by a factor of 0.5 1259 Verma P., Truhlar D. G.
      J. Phys. Chem. Lett.
      (2017), 8, pp. 380.
      Link

    • KT1: GGA functional designed specifically for shielding constant calculations 608 Keal T. W., Tozer D. J.
      J. Chem. Phys.
      (2003), 119, pp. 3015.
      Link

    • KT2: GGA functional designed specifically for shielding constant calculations 608 Keal T. W., Tozer D. J.
      J. Chem. Phys.
      (2003), 119, pp. 3015.
      Link

    • KT3: GGA functional with improved results for main-group nuclear magnetic resonance shielding constants 609 Keal T. W., Tozer D. J.
      J. Chem. Phys.
      (2004), 121, pp. 5654.
      Link

    • mPW91*: mPW91 GGA exchange + PW91 GGA correlation

    • N12: 21-parameter non-separable gradient approximation functional by Peverati and Truhlar 974 Peverati R., Truhlar D. G.
      J. Chem. Theory Comput.
      (2012), 8, pp. 2310.
      Link

    • OLYP*: OPTX GGA exchange + LYP GGA correlation

    • PBEOP: PBE GGA exchange + PBEOP “one-parameter progressive” GGA correlation 1238 Tsuneda T., Suzumura T., Hirao K.
      J. Chem. Phys.
      (1999), 110, pp. 10664.
      Link

    • PBEsol*: PBEsol GGA exchange + PBEsol GGA correlation

    • PW91*: PW91 GGA exchange + PW91 GGA correlation

    • RPBE*: RPBE GGA exchange + PBE GGA correlation

    • rVV10*: rPW86 GGA exchange + PBE GGA correlation + rVV10 non-local correlation 1075 Sabatini R., Gorni T., de Gironcoli S.
      Phys. Rev. B
      (2013), 87, pp. 041108.
      Link

    • SOGGA*: SOGGA GGA exchange + PBE GGA correlation

    • SOGGA11: 20-parameter functional by Peverati, Zhao, and Truhlar 977 Peverati R., Zhao Y., Truhlar D. G.
      J. Phys. Chem. Lett.
      (2011), 2, pp. 1991.
      Link

    • VV10: rPW86 GGA exchange + PBE GGA correlation + VV10 non-local correlation 1273 Vydrov O. A., Van Voorhis T.
      J. Chem. Phys.
      (2010), 133, pp. 244103.
      Link

  • Meta-Generalized Gradient Approximation (meta-GGA)

    • B97M-V: 12-parameter combinatorially-optimized, dispersion-corrected (VV10) functional by Mardirossian and Head-Gordon 811 Mardirossian N., Head-Gordon M.
      J. Chem. Phys.
      (2015), 142, pp. 074111.
      Link

    • B97M-rV*: B97M-V density functional with the VV10 NLC functional replaced by the rVV10 NLC functional 814 Mardirossian N. et al.
      J. Phys. Chem. Lett.
      (2017), 8, pp. 35.
      Link

    • M06-L: 34-parameter functional by Zhao and Truhlar 1390 Zhao Y., Truhlar D. G.
      J. Chem. Phys.
      (2006), 125, pp. 194101.
      Link

    • TPSS*: TPSS meta-GGA exchange + TPSS meta-GGA correlation

    • revTPSS*: revTPSS meta-GGA exchange + revTPSS meta-GGA correlation

    • BLOC*: BLOC meta-GGA exchange + TPSSloc meta-GGA correlation

    • M11-L: 44-parameter dual-range functional by Peverati and Truhlar 973 Peverati R., Truhlar D. G.
      J. Phys. Chem. Lett.
      (2012), 3, pp. 117.
      Link

    • mBEEF: 64-parameter exchange functional paired with the PBEsol correlation functional 1297 Wellendorff J. et al.
      J. Chem. Phys.
      (2014), 140, pp. 144107.
      Link

    • MGGA_MS0: MGGA_MS0 meta-GGA exchange + regTPSS GGA correlation 1197 Sun J., Xiao B., Ruzsinszky A.
      J. Chem. Phys.
      (2012), 137, pp. 051101.
      Link

    • MGGA_MS1: MGGA_MS1 meta-GGA exchange + regTPSS GGA correlation 1194 Sun J. et al.
      J. Chem. Phys.
      (2013), 138, pp. 044113.
      Link

    • MGGA_MS2: MGGA_MS2 meta-GGA exchange + regTPSS GGA correlation 1194 Sun J. et al.
      J. Chem. Phys.
      (2013), 138, pp. 044113.
      Link

    • MGGA_MVS: MGGA_MVS meta-GGA exchange + regTPSS GGA correlation 1195 Sun J., Perdew J. P., Ruzsinszky A.
      Proc. Natl. Acad. Sci. USA
      (2015), 112, pp. 685.
      Link

    • MN12-L: 58-parameter meta-nonseparable gradient approximation functional by Peverati and Truhlar 975 Peverati R., Truhlar D. G.
      Phys. Chem. Chem. Phys.
      (2012), 14, pp. 13171.
      Link

    • MN15-L: 58-parameter meta-nonseparable gradient approximation functional by Yu, He, and Truhlar 1370 Yu H. S., He X., Truhlar D. G.
      J. Chem. Theory Comput.
      (2016), 12, pp. 1280.
      Link

    • oTPSS*: oTPSS meta-GGA exchange + oTPSS meta-GGA correlation

    • PKZB*: PKZB meta-GGA exchange + PKZB meta-GGA correlation

    • revM06-L: 31-parameter revised M06-L functional

    • SCAN*: SCAN meta-GGA exchange + SCAN meta-GGA correlation

    • rSCAN: rSCAN exchange + rSCAN correltaion

    • r++SCAN: r++SCAN exchange + r++SCAN correlation

    • r2SCAN: r2SCAN exchange + r2SCAN correlation

    • r4SCAN: r4SCAN exchange + r2SCAN correlation

    • revSCAN: revSCAN exchange + revSCAN correlation

    • t-HCTH (τ-HCTH): 16-parameter functional by Boese and Handy 125 Boese A. D., Handy N. C.
      J. Chem. Phys.
      (2002), 116, pp. 9559.
      Link

    • TM*: TM meta-GGA exchange + TM meta-GGA correlation 1210 Tao J., Mo Y.
      Phys. Rev. Lett.
      (2016), 117, pp. 073001.
      Link

    • revTM: revTM exchange + revTM correlation

    • regTM: regTM exchange + regTPSS correlation

    • rregTM: regTM exchange + rregTM correlation

    • TASK: TASK exchange + PW92 correlation

    • mTASK: mTASK exchange + PW92 correlation

    • VSXC: 21-parameter functional by Voorhis and Scuseria 1252 Van Voorhis T., Scuseria G. E.
      J. Chem. Phys.
      (1998), 109, pp. 400.
      Link

  • Global Hybrid Generalized Gradient Approximation (GH GGA)

    • B3LYP: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange + 19% VWN1RPA LSDA correlation + 81% LYP GGA correlation 85 Becke A. D.
      J. Chem. Phys.
      (1993), 98, pp. 5648.
      Link
      , 1179 Stephens P. J. et al.
      J. Phys. Chem.
      (1994), 98, pp. 11623.
      Link

    • PBE0: 25% HF exchange + 75% PBE GGA exchange + PBE GGA correlation 19 Adamo C., Barone V.
      J. Chem. Phys.
      (1999), 110, pp. 6158.
      Link

    • revPBE0: 25% HF exchange + 75% revPBE GGA exchange + PBE GGA correlation

    • B97: Becke’s original 10-parameter density functional with 19.43% HF exchange 88 Becke A. D.
      J. Chem. Phys.
      (1997), 107, pp. 8554.
      Link

    • B1LYP: 25% HF exchange + 75% B88 GGA exchange + LYP GGA correlation 17 Adamo C., Barone V.
      Chem. Phys. Lett.
      (1997), 274, pp. 242.
      Link

    • B1PW91: 25% HF exchange + 75% B88 GGA exchange + PW91 GGA correlation 17 Adamo C., Barone V.
      Chem. Phys. Lett.
      (1997), 274, pp. 242.
      Link

    • B3LYP5: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange + 19% VWN5 LSDA correlation + 81% LYP GGA correlation 85 Becke A. D.
      J. Chem. Phys.
      (1993), 98, pp. 5648.
      Link
      , 1179 Stephens P. J. et al.
      J. Phys. Chem.
      (1994), 98, pp. 11623.
      Link

    • B3P86: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange+ 19% VWN1RPA LSDA correlation + 81% P86 GGA correlation

    • B1LYP: 25% HF exchange + 75% B88 GGA exchange + LYP GGA correlation 17 Adamo C., Barone V.
      Chem. Phys. Lett.
      (1997), 274, pp. 242.
      Link

    • B1PW91: 25% HF exchange + 75% B88 GGA exchange + PW91 GGA correlation 17 Adamo C., Barone V.
      Chem. Phys. Lett.
      (1997), 274, pp. 242.
      Link

    • B3LYP5: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange + 19% VWN5 LSDA correlation + 81% LYP GGA correlation 85 Becke A. D.
      J. Chem. Phys.
      (1993), 98, pp. 5648.
      Link
      , 1179 Stephens P. J. et al.
      J. Phys. Chem.
      (1994), 98, pp. 11623.
      Link

    • B3P86: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange+ 19% VWN1RPA LSDA correlation + 81% P86 GGA correlation

    • B3PW91: 20% HF exchange + 8% Slater LSDA exchange + 72% B88 GGA exchange+ 19% PW92 LSDA correlation + 81% PW91 GGA correlation 85 Becke A. D.
      J. Chem. Phys.
      (1993), 98, pp. 5648.
      Link

    • B5050LYP: 50% HF exchange + 8% Slater LSDA exchange + 42% B88 GGA exchange + 19% VWN5 LSDA correlation + 81% LYP GGA correlation 1117 Shao Y., Head-Gordon M., Krylov A. I.
      J. Chem. Phys.
      (2003), 118, pp. 4807.
      Link

    • B97-1: Self-consistent parameterization of Becke’s B97 density functional with 21% HF exchange 455 Hamprecht F. A. et al.
      J. Chem. Phys.
      (1998), 109, pp. 6264.
      Link

    • B97-2: Re-parameterization of B97 by Tozer and coworkers with 21% HF exchange 1326 Wilson P. J., Bradley T. J., Tozer D. J.
      J. Chem. Phys.
      (2001), 115, pp. 9233.
      Link

    • B97-3: 16-parameter version of B97 by Keal and Tozer with 26.93% HF exchange 610 Keal T. W., Tozer D. J.
      J. Chem. Phys.
      (2005), 123, pp. 121103.
      Link

    • B97-K: Re-parameterization of B97 for kinetics by Boese and Martin with 42% HF exchange 126 Boese A. D., Martin J. M. L.
      J. Chem. Phys.
      (2004), 121, pp. 3405.
      Link

    • BHHLYP: 50% HF exchange + 50% B88 GGA exchange + LYP GGA correlation

    • HFLYP*: 100% HF exchange + LYP GGA correlation

    • MPW1K: 42.8% HF exchange + 57.2% mPW91 GGA exchange + PW91 GGA correlation 783 Lynch B. J. et al.
      J. Phys. Chem. A
      (2000), 104, pp. 4811.
      Link

    • MPW1LYP: 25% HF exchange + 75% mPW91 GGA exchange + LYP GGA correlation 18 Adamo C., Barone V.
      J. Chem. Phys.
      (1998), 108, pp. 664.
      Link

    • MPW1PBE: 25% HF exchange + 75% mPW91 GGA exchange + PBE GGA correlation 18 Adamo C., Barone V.
      J. Chem. Phys.
      (1998), 108, pp. 664.
      Link

    • MPW1PW91: 25% HF exchange + 75% mPW91 GGA exchange + PW91 GGA correlation 18 Adamo C., Barone V.
      J. Chem. Phys.
      (1998), 108, pp. 664.
      Link

    • O3LYP: 11.61% HF exchange + 7.1% Slater LSDA exchange + 81.33% OPTX GGA exchange + 19% VWN5 LSDA correlation + 81% LYP GGA correlation 521 Hoe W.-M., Cohen A. J., Handy N. C.
      Chem. Phys. Lett.
      (2001), 341, pp. 319.
      Link

    • PBEh-3c: Low-cost composite scheme of Grimme and coworkers for use with the def2-mSVP basis set only 431 Grimme S. et al.
      J. Chem. Phys.
      (2015), 143, pp. 054107.
      Link

    • PBE50: 50% HF exchange + 50% PBE GGA exchange + PBE GGA correlation 100 Bernard Y. A., Shao Y., Krylov A. I.
      J. Chem. Phys.
      (2012), 136, pp. 204103.
      Link

    • SOGGA11-X: 21-parameter functional with 40.15% HF exchange by Peverati and Truhlar 971 Peverati R., Truhlar D. G.
      J. Chem. Phys.
      (2011), 135, pp. 191102.
      Link

    • WC04: Hybrid density functional optimized for the computation of 13C chemical shifts 1318 Wiitala K. W., Hoye T. R., Cramer C. J.
      J. Chem. Theory Comput.
      (2006), 2, pp. 1085.
      Link

    • WP04: Hybrid density functional optimized for the computation of 1H chemical shifts 1318 Wiitala K. W., Hoye T. R., Cramer C. J.
      J. Chem. Theory Comput.
      (2006), 2, pp. 1085.
      Link

    • X3LYP: 21.8% HF exchange + 7.3% Slater LSDA exchange + 54.24% B88 GGA exchange + 16.66% PW91 GGA exchange + 12.9% VWN1RPA LSDA correlation + 87.1% LYP GGA correlation 1353 Xu X., Goddard III W. A.
      Proc. Natl. Acad. Sci. USA
      (2004), 101, pp. 2673.
      Link

  • Global Hybrid Meta-Generalized Gradient Approximation (GH meta-GGA)

    • M06-2X: 29-parameter functional with 54% HF exchange by Zhao and Truhlar 1394 Zhao Y., Truhlar D. G.
      Theor. Chem. Acc.
      (2008), 120, pp. 215.
      Link

    • M08-HX: 47-parameter functional with 52.23% HF exchange by Zhao and Truhlar 1393 Zhao Y., Truhlar D. G.
      J. Chem. Theory Comput.
      (2007), 4, pp. 1849.
      Link

    • TPSSh: 10% HF exchange + 90% TPSS meta-GGA exchange + TPSS meta-GGA correlation 1164 Staroverov V. N. et al.
      J. Chem. Phys.
      (2003), 119, pp. 12129.
      Link

    • revTPSSh: 10% HF exchange + 90% revTPSS meta-GGA exchange + revTPSS meta-GGA correlation 255 Csonka G. I., Perdew J. P., Ruzsinszky A.
      J. Chem. Theory Comput.
      (2010), 6, pp. 3688.
      Link

    • B1B95: 28% HF exchange + 72% B88 GGA exchange + B95 meta-GGA correlation 87 Becke A. D.
      J. Chem. Phys.
      (1996), 104, pp. 1040.
      Link

    • B3TLAP: 17.13% HF exchange + 9.66% Slater LSDA exchange + 72.6% B88 GGA exchange + PK06 meta-GGA correlation 1012 Proynov E., Kong J.
      J. Chem. Theory Comput.
      (2007), 3, pp. 746.
      Link

    • BB1K: 42% HF exchange + 58% B88 GGA exchange + B95 meta-GGA correlation 1385 Zhao Y., Lynch B. J., Truhlar D. G.
      J. Phys. Chem. A
      (2004), 108, pp. 2715.
      Link

    • BMK: Boese-Martin functional for kinetics with 42% HF exchange 126 Boese A. D., Martin J. M. L.
      J. Chem. Phys.
      (2004), 121, pp. 3405.
      Link

    • dlDF: Dispersion-less density functional (based on the M05-2X functional form) by Szalewicz and coworkers 966 Pernal K. et al.
      Phys. Rev. Lett.
      (2009), 103, pp. 263201.
      Link

    • M05: 22-parameter functional with 28% HF exchange by Zhao, Schultz, and Truhlar 1386 Zhao Y., Schultz N. E., Truhlar D. G.
      J. Chem. Phys.
      (2005), 123, pp. 161103.
      Link

    • M05-2X: 19-parameter functional with 56% HF exchange by Zhao, Schultz, and Truhlar 1387 Zhao Y., Schultz N. E., Truhlar D. G.
      J. Chem. Theory Comput.
      (2006), 2, pp. 364.
      Link

    • M06: 33-parameter functional with 27% HF exchange by Zhao and Truhlar 1394 Zhao Y., Truhlar D. G.
      Theor. Chem. Acc.
      (2008), 120, pp. 215.
      Link

    • M06-HF: 32-parameter functional with 100% HF exchange by Zhao and Truhlar 1391 Zhao Y., Truhlar D. G.
      J. Phys. Chem. A
      (2006), 110, pp. 13126.
      Link

    • M08-SO: 44-parameter functional with 56.79% HF exchange by Zhao and Truhlar 1393 Zhao Y., Truhlar D. G.
      J. Chem. Theory Comput.
      (2007), 4, pp. 1849.
      Link

    • MGGA_MS2h: 9% HF exchange + 91 % MGGA_MS2 meta-GGA exchange + regTPSS GGA correlation 1194 Sun J. et al.
      J. Chem. Phys.
      (2013), 138, pp. 044113.
      Link

    • MGGA_MVSh: 25% HF exchange + 75 % MGGA_MVS meta-GGA exchange + regTPSS GGA correlation 1195 Sun J., Perdew J. P., Ruzsinszky A.
      Proc. Natl. Acad. Sci. USA
      (2015), 112, pp. 685.
      Link

    • MN15: 59-parameter functional with 44% HF exchange by Truhlar and coworkers 1369 Yu H. S. et al.
      Chem. Sci.
      (2016), 7, pp. 5032.
      Link

    • MPW1B95: 31% HF exchange + 69% mPW91 GGA exchange + B95 meta-GGA correlation 1388 Zhao Y., Truhlar D. G.
      J. Phys. Chem. A
      (2004), 108, pp. 6908.
      Link

    • MPWB1K: 44% HF exchange + 56% mPW91 GGA exchange + B95 meta-GGA correlation 1388 Zhao Y., Truhlar D. G.
      J. Phys. Chem. A
      (2004), 108, pp. 6908.
      Link

    • PW6B95: 6-parameter combination of 28 % HF exchange, 72 % optimized PW91 GGA exchange, and re-optimized B95 meta-GGA correlation by Zhao and Truhlar 1389 Zhao Y., Truhlar D. G.
      J. Phys. Chem. A
      (2005), 109, pp. 5656.
      Link

    • PWB6K: 6-parameter combination of 46 % HF exchange, 54 % optimized PW91 GGA exchange, and re-optimized B95 meta-GGA correlation by Zhao and Truhlar 1389 Zhao Y., Truhlar D. G.
      J. Phys. Chem. A
      (2005), 109, pp. 5656.
      Link

    • revM06: 32-parameter functional with 40.41% HF exchange 1284 Wang Y. et al.
      Proc. Natl. Acad. Sci. USA
      (2018), 115, pp. 10257.
      Link

    • SCAN0: 25% HF exchange + 75% SCAN meta-GGA exchange + SCAN meta-GGA correlation 538 Hui K., Chai J.-D.
      J. Chem. Phys.
      (2016), 144, pp. 044114.
      Link

    • t-HCTHh (τ-HCTHh): 17-parameter functional with 15% HF exchange by Boese and Handy 125 Boese A. D., Handy N. C.
      J. Chem. Phys.
      (2002), 116, pp. 9559.
      Link

    • TPSS0: 25% HF exchange + 75% TPSS meta-GGA exchange + TPSS meta-GGA correlation 435 Grimme S.
      J. Phys. Chem. A
      (2005), 109, pp. 3067.
      Link

  • Range-Separated Hybrid Generalized Gradient Approximation (RSH GGA)

    • wB97X-V (ωB97X-V): 10-parameter combinatorially-optimized, dispersion-corrected (VV10) functional with 16.7% SR HF exchange, 100% LR HF exchange, and ω=0.3 810 Mardirossian N., Head-Gordon M.
      Phys. Chem. Chem. Phys.
      (2014), 16, pp. 9904.
      Link

    • wB97X-D3 (ωB97X-D3): 16-parameter dispersion-corrected (DFT-D3(0)) functional with 19.57% SR HF exchange, 100% LR HF exchange, and ω=0.25 753 Lin Y.-S. et al.
      J. Chem. Theory Comput.
      (2013), 9, pp. 263.
      Link

    • wB97X-D (ωB97X-D): 15-parameter dispersion-corrected (DFT-CHG) functional with 22.2% SR HF exchange, 100% LR HF exchange, and ω=0.2 195 Chai J.-D., Head-Gordon M.
      Phys. Chem. Chem. Phys.
      (2008), 10, pp. 6615.
      Link

    • CAM-B3LYP: Coulomb-attenuating method functional by Handy and coworkers 1355 Yanai T., Tew D. P., Handy N. C.
      Chem. Phys. Lett.
      (2004), 393, pp. 51.
      Link

    • CAM-QTP00: Re-parameterized CAM-B3LYP designed to satisfy the IP-theorem for all occupied orbitals of the water molecule 1258 Verma P., Bartlett R. J.
      J. Chem. Phys.
      (2014), 140, pp. 18A534.
      Link

    • CAM-QTP01: Re-parameterized CAM-B3LYP optimized to satisfy the valence IPs of the water molecule, 34 excitation states, and G2-1 atomization energies 577 Jin Y., Bartlett R. J.
      J. Chem. Phys.
      (2016), 145, pp. 034107.
      Link

    • HSE-HJS: Screened-exchange “HSE06” functional with 25% SR HF exchange, 0% LR HF exchange, and ω=0.11, using the updated HJS PBE exchange hole model 652 Krukau A. V. et al.
      J. Chem. Phys.
      (2006), 125, pp. 224106.
      Link
      , 492 Henderson T. M., Janesko B. G., Scuseria G. E.
      J. Chem. Phys.
      (2008), 128, pp. 194105.
      Link

    • LC-rVV10*: LC-VV10 density functional with the VV10 NLC functional replaced by the rVV10 NLC functional 814 Mardirossian N. et al.
      J. Phys. Chem. Lett.
      (2017), 8, pp. 35.
      Link

    • LC-VV10: 0% SR HF exchange + 100% LR HF exchange + ωPBE GGA exchange + PBE GGA correlation + VV10 non-local correlation (ω=0.45) 1273 Vydrov O. A., Van Voorhis T.
      J. Chem. Phys.
      (2010), 133, pp. 244103.
      Link

    • LC-wPBE08 (LC-ωPBE08): 0% SR HF exchange + 100% LR HF exchange + ωPBE GGA exchange + PBE GGA correlation (ω=0.45) 1296 Weintraub E., Henderson T. M., Scuseria G. E.
      J. Chem. Theory Comput.
      (2009), 5, pp. 754.
      Link

    • LRC-BOP (LRC-μBOP): 0% SR HF exchange + 100% LR HF exchange + μB88 GGA exchange + BOP GGA correlation (ω=0.47) 1155 Song J. W. et al.
      J. Chem. Phys.
      (2007), 126, pp. 154105.
      Link
      , 1054 Richard R. M., Herbert J. M.
      J. Chem. Theory Comput.
      (2011), 7, pp. 1296.
      Link

    • LRC-wPBE (LRC-ωPBE): 0% SR HF exchange + 100% LR HF exchange + ωPBE GGA exchange + PBE GGA correlation (ω=0.3) 1061 Rohrdanz M. A., Herbert J. M.
      J. Chem. Phys.
      (2008), 129, pp. 034107.
      Link

    • LRC-wPBEh (LRC-ωPBEh): 20% SR HF exchange + 100% LR HF exchange + 80% ωPBE GGA exchange + PBE GGA correlation (ω=0.2) 1062 Rohrdanz M. A., Martins K. M., Herbert J. M.
      J. Chem. Phys.
      (2009), 130, pp. 054112.
      Link

    • N12-SX: 26-parameter non-separable GGA with 25% SR HF exchange, 0% LR HF exchange, and ω=0.11 976 Peverati R., Truhlar D. G.
      Phys. Chem. Chem. Phys.
      (2012), 14, pp. 16187.
      Link

    • rCAM-B3LYP: Re-fit CAM-B3LYP with the goal of minimizing many-electron self-interaction error 229 Cohen A. J., Mori-Sánchez P., Yang W.
      J. Chem. Phys.
      (2007), 126, pp. 191109.
      Link

    • wB97 (ωB97): 13-parameter functional with 0% SR HF exchange, 100% LR HF exchange, and ω=0.4 194 Chai J.-D., Head-Gordon M.
      J. Chem. Phys.
      (2008), 128, pp. 084106.
      Link

    • wB97X (ωB97X): 14-parameter functional with 15.77% SR HF exchange, 100% LR HF exchange, and ω=0.3 194 Chai J.-D., Head-Gordon M.
      J. Chem. Phys.
      (2008), 128, pp. 084106.
      Link

    • wB97X-rV* (ωB97X-rV): ωB97X-V density functional with the VV10 NLC functional replaced by the rVV10 NLC functional 814 Mardirossian N. et al.
      J. Phys. Chem. Lett.
      (2017), 8, pp. 35.
      Link

  • Range-Separated Hybrid Meta-Generalized Gradient Approximation (RSH meta-GGA)

    • wB97M-V (ωB97M-V): 12-parameter combinatorially-optimized, dispersion-corrected (VV10) functional with 15% SR HF exchange, 100% LR HF exchange, and ω=0.3 812 Mardirossian N., Head-Gordon M.
      J. Chem. Phys.
      (2016), 144, pp. 214110.
      Link

    • M06-SX: local revM06-L functional with 33.5% SR HF exchange 1285 Wang Y. et al.
      Proc. Natl. Acad. Sci. USA
      (2020), 117, pp. 2294.
      Link

    • M11: 40-parameter functional with 42.8% SR HF exchange, 100% LR HF exchange, and ω=0.25 972 Peverati R., Truhlar D. G.
      J. Phys. Chem. Lett.
      (2011), 2, pp. 2810.
      Link

    • MN12-SX: 58-parameter non-separable meta-GGA with 25% SR HF exchange, 0% LR HF exchange, and ω=0.11 976 Peverati R., Truhlar D. G.
      Phys. Chem. Chem. Phys.
      (2012), 14, pp. 16187.
      Link

    • revM11: 22-parameter functional with 22.5% SR HF exchange, 100% LR HF exchange, and ω=0.4 1260 Verma P. et al.
      J. Phys. Chem. A
      (2019), 123, pp. 2966.
      Link

    • wB97M-rV* (ωB97X-rV): ωB97M-V density functional with the VV10 NLC functional replaced by the rVV10 NLC functional 814 Mardirossian N. et al.
      J. Phys. Chem. Lett.
      (2017), 8, pp. 35.
      Link

    • wM05-D (ωM05-D): 21-parameter dispersion-corrected (DFT-CHG) functional with 36.96% SR HF exchange, 100% LR HF exchange, and ω=0.2 754 Lin Y.-S. et al.
      J. Chem. Phys.
      (2012), 136, pp. 154109.
      Link

    • wM06-D3 (ωM06-D3): 25-parameter dispersion-corrected [DFT-D3(0)] functional with 27.15% SR HF exchange, 100% LR HF exchange, and ω=0.3 753 Lin Y.-S. et al.
      J. Chem. Theory Comput.
      (2013), 9, pp. 263.
      Link

  • Double Hybrid Generalized Gradient Approximation (DH GGA)

    Note:  In order to use the resolution-of-the-identity approximation for the MP2 component, specify an auxiliary basis set with the $rem variable AUX_BASIS

    • DSD-PBEPBE-D3: 68% HF exchange + 32% PBE GGA exchange + 49% PBE GGA correlation + 13% SS MP2 correlation + 55% OS MP2 correlation with DFT-D3(BJ) tail 646 Kozuch S., Martin J. M. L.
      J. Comput. Chem.
      (2013), 34, pp. 2327.
      Link

    • wB97X-2(LP) (ωB97X-2(LP)): 13-parameter functional with 67.88% SR HF exchange, 100% LR HF exchange, 58.16% SS MP2 correlation, 47.80% OS MP2 correlation, and ω=0.3 196 Chai J.-D., Head-Gordon M.
      J. Chem. Phys.
      (2009), 131, pp. 174105.
      Link

    • wB97X-2(TQZ) (ωB97X-2(TQZ)): 13-parameter functional with 63.62% SR HF exchange, 100% LR HF exchange, 52.93% SS MP2 correlation, 44.71% OS MP2 correlation, and ω=0.3 196 Chai J.-D., Head-Gordon M.
      J. Chem. Phys.
      (2009), 131, pp. 174105.
      Link

    • XYG3: 80.33% HF exchange - 1.4% Slater LSDA exchange + 21.07% B88 GGA exchange + 67.89% LYP GGA correlation + 32.11% MP2 correlation (evaluated with B3LYP orbitals) 1382 Zhang Y., Xu X., Goddard III W. A.
      Proc. Natl. Acad. Sci. USA
      (2009), 106, pp. 4963.
      Link

    • XYGJ-OS: 77.31% HF exchange + 22.69% Slater LSDA exchange + 23.09% VWN1RPA LSDA correlation + 27.54% LYP GGA correlation + 43.64% OS MP2 correlation (evaluated with B3LYP orbitals) 1375 Zhang I. Y. et al.
      Proc. Natl. Acad. Sci. USA
      (2011), 108, pp. 19896.
      Link

    • B2PLYP: 53% HF exchange + 47% B88 GGA exchange + 73% LYP GGA correlation + 27% MP2 correlation 436 Grimme S.
      J. Chem. Phys.
      (2006), 124, pp. 034108.
      Link

    • B2GPPLYP: 65% HF exchange + 35% B88 GGA exchange + 64% LYP GGA correlation + 36% MP2 correlation 603 Karton A. et al.
      J. Phys. Chem. A
      (2008), 112, pp. 12868.
      Link

    • DSD-PBEP86-D3: 69% HF exchange + 31% PBE GGA exchange + 44% P86 GGA correlation + 22% SS MP2 correlation + 52% OS MP2 correlation with DFT-D3(BJ) tail 646 Kozuch S., Martin J. M. L.
      J. Comput. Chem.
      (2013), 34, pp. 2327.
      Link

    • LS1DH-PBE: 75% HF exchange + 25% PBE GGA exchange + 57.8125% PBE GGA correlation + 42.1875% MP2 correlation 1229 Toulouse J. et al.
      J. Chem. Phys.
      (2011), 135, pp. 101102.
      Link

    • PBE-QIDH: 69.3361% HF exchange + 30.6639% PBE GGA exchange + 66.6667% PBE GGA correlation + 33.3333% MP2 correlation 139 Brémond É. et al.
      J. Chem. Phys.
      (2014), 141, pp. 031101.
      Link

    • PBE0-2: 79.37% HF exchange + 20.63% PBE GGA exchange + 50% PBE GGA correlation + 50% MP2 correlation 197 Chai J.-D., Mao S.-P.
      Chem. Phys. Lett.
      (2012), 538, pp. 121.
      Link

    • PBE0-DH: 50% HF exchange + 50% PBE GGA exchange + 87.5% PBE GGA correlation + 12.5% MP2 correlation 138 Brémond E., Adamo C.
      J. Chem. Phys.
      (2011), 135, pp. 024106.
      Link

  • Double Hybrid Meta-Generalized Gradient Approximation (DH MGGA)

    • wB97M(2): 14-parameter functional form by wB97M-V + MP2 correlation. 813 Mardirossian N., Head-Gordon M.
      J. Chem. Phys.
      (2018), 148, pp. 241736.
      Link

    • PTPSS-D3: 50% HF exchange + 50% Re-Fit TPSS meta-GGA exchange + 62.5% Re-Fit TPSS meta-GGA correlation + 37.5% OS MP2 correlation with DFT-D3(0) tail 412 Goerigk L., Grimme S.
      J. Chem. Theory Comput.
      (2011), 7, pp. 291.
      Link

    • DSD-PBEB95-D3: 66% HF exchange + 34% PBE GGA exchange + 55% B95 GGA correlation + 9% SS MP2 correlation + 46% OS MP2 correlation with DFT-D3(BJ) tail 646 Kozuch S., Martin J. M. L.
      J. Comput. Chem.
      (2013), 34, pp. 2327.
      Link

    • PWPB95-D3: 50% HF exchange + 50% Re-Fit PW91 GGA exchange + 73.1% Re-Fit B95 meta-GGA correlation + 26.9% OS MP2 correlation with DFT-D3(0) tail 412 Goerigk L., Grimme S.
      J. Chem. Theory Comput.
      (2011), 7, pp. 291.
      Link