X

Search Results

Searching....

12.1 Introduction

12.1.1 Overview

(April 13, 2024)

Molecular complexes and molecular clusters represent a broad class of systems with interesting chemical and physical properties. Such systems can be naturally partitioned into fragments each representing a molecule or several molecules. Q-Chem contains a set of methods designed to use such partitioning either for physical or computational advantage. Some of these methods (e.g. the ALMO-EDA method and its most recent updates/extensions) were developed and implemented by Dr. Rustam Z. Khaliullin, Dr. Paul R. Horn, Dr. Yuezhi Mao, Dr. Jonathan Thirman, Dr. Daniel S. Levine, Dr. Qinghui Ge, and Matthias Loipersberger working with Prof. Martin Head-Gordon at the University of California–Berkeley. Other methods [e.g., the XSAPT family of methods and TDDFT(MI)] were developed by Drs. Leif Jacobson, Ka Un Lao, and Jie Liu working with Prof. John Herbert at Ohio State University.

The list of methods that use partitioning includes:

  • Initial guess at the MOs as a superposition of the converged MOs on the isolated fragments (FRAGMO guess). 617 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link

  • Constrained (locally-projected) SCF methods for molecular interactions (SCF MI methods) between both closed-shell 617 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link
    and open-shell 533 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link
    fragments.

  • Single Roothaan-step (RS) correction methods that improve FRAGMO and SCF MI description of molecular systems. 617 Khaliullin R. Z., Head-Gordon M., Bell A. T.
    J. Chem. Phys.
    (2006), 124, pp. 204105.
    Link
    , 533 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link

  • Automated calculation of the BSSE with counterpoise correction method (full SCF and RS implementation).

  • The original version the ALMO-EDA method (energy decomposition analysis based on absolutely localized molecular orbitals), including the associated charge transfer analysis, 616 Khaliullin R. Z. et al.
    J. Phys. Chem. A
    (2007), 111, pp. 8753.
    Link
    , 614 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    J. Chem. Phys.
    (2008), 128, pp. 184112.
    Link
    , 533 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link
    and the analysis of intermolecular bonding in terms of complementary occupied-virtual pairs (COVPs). 614 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    J. Chem. Phys.
    (2008), 128, pp. 184112.
    Link
    , 615 Khaliullin R. Z., Bell A. T., Head-Gordon M.
    Chem. Eur. J
    (2009), 15, pp. 851.
    Link
    , 533 Horn P. R. et al.
    J. Chem. Phys.
    (2013), 138, pp. 134119.
    Link

  • The second-generation ALMO-EDA method, 532 Horn P. R., Mao Y., Head-Gordon M.
    Phys. Chem. Chem. Phys.
    (2016), 18, pp. 23067.
    Link
    , 803 Mao Y. et al.
    Annu. Rev. Phys. Chem.
    (2021), 72, pp. 641.
    Link
    , 529 Horn P. R., Head-Gordon M.
    J. Chem. Phys.
    (2015), 143, pp. 114111.
    Link
    , 531 Horn P. R., Mao Y., Head-Gordon M.
    J. Chem. Phys.
    (2016), 144, pp. 114107.
    Link
    , 802 Mao Y. et al.
    Phys. Chem. Chem. Phys.
    (2020), 22, pp. 12867.
    Link
    including its extension to single-bond interactions 734 Levine D. S. et al.
    J. Chem. Theory Comput.
    (2016), 12, pp. 4812.
    Link
    , 732 Levine D. S., Head-Gordon M.
    J. Phys. Chem. Lett.
    (2017), 8, pp. 1967.
    Link
    , 733 Levine D. S., Head-Gordon M.
    Proc. Natl. Acad. Sci. USA
    (2017), 114, pp. 12649.
    Link
    and the ALMO-EDA(solv) scheme 804 Mao Y. et al.
    Chem. Sci.
    (2021), 12, pp. 1398.
    Link
    for the inclusion of implicit solvents in EDA calculation.

  • The adiabatic ALMO-EDA method that analyzes the effects intermolecular interactions on molecular properties. 801 Mao Y., Horn P. R., Head-Gordon M.
    Phys. Chem. Chem. Phys.
    (2017), 19, pp. 5944.
    Link
    , 776 Loipersberger M., Mao Y., Head-Gordon M.
    J. Chem. Theory Comput.
    (2020), 16, pp. 1073.
    Link

  • An extension of the ALMO-EDA to RI-MP2. 1217 Thirman J., Head-Gordon M.
    J. Chem. Phys.
    (2015), 143, pp. 084124.
    Link
    , 1218 Thirman J., Head-Gordon M.
    J. Phys. Chem. A
    (2017), 121, pp. 717.
    Link
    , 775 Loipersberger M. et al.
    J. Phys. Chem. A
    (2019), 123, pp. 9621.
    Link

  • An extension of the ALMO-EDA to intermolecular interactions involving excited-state molecules (calculated by CIS or TDDFT/TDA). 385 Ge Q., Mao Y., Head-Gordon M.
    J. Chem. Phys.
    (2018), 148, pp. 064105.
    Link
    , 384 Ge Q., Head-Gordon M.
    J. Chem. Theory Comput.
    (2018), 14, pp. 5156.
    Link

  • The variational explicit polarization (XPol) method, a self-consistent, charge-embedded, monomer-based SCF calculation. 1352 Xie W. et al.
    J. Chem. Phys.
    (2008), 128, pp. 234108.
    Link
    , 557 Jacobson L. D., Herbert J. M.
    J. Chem. Phys.
    (2011), 134, pp. 094118.
    Link
    , 498 Herbert J. M. et al.
    Phys. Chem. Chem. Phys.
    (2012), 14, pp. 7679.
    Link

  • Symmetry-adapted perturbation theory (SAPT), a monomer-based method for computing intermolecular interaction energies and decomposing them into physically-meaningful components. 575 Jeziorski B., Moszynski R., Szalewicz K.
    Chem. Rev.
    (1994), 94, pp. 1887.
    Link
    , 1203 Szalewicz K.
    Wiley Interdiscip. Rev.: Comput. Mol. Sci.
    (2012), 2, pp. 254.
    Link

  • XPol+SAPT (XSAPT), which extends the SAPT methodology to systems consisting of more than two monomers. 557 Jacobson L. D., Herbert J. M.
    J. Chem. Phys.
    (2011), 134, pp. 094118.
    Link
    , 498 Herbert J. M. et al.
    Phys. Chem. Chem. Phys.
    (2012), 14, pp. 7679.
    Link
    , 558 Jacobson L. D. et al.
    Annu. Rep. Comp. Chem.
    (2013), 9, pp. 25.
    Link

  • Closed- and open-shell AO-XSAPT(KS)+D, a dispersion-corrected version of XSAPT in atomic orbital basis that affords accurate intermolecular interaction energies at very low cost. 688 Lao K. U., Herbert J. M.
    J. Phys. Chem. Lett.
    (2012), 3, pp. 3241.
    Link
    , 689 Lao K. U., Herbert J. M.
    J. Chem. Phys.
    (2013), 139, pp. 034107.
    Link
    , 691 Lao K. U., Herbert J. M.
    J. Phys. Chem. A
    (2015), 119, pp. 235.
    Link

  • A stable and physically-motivated energy decomposition approach, SAPT/cDFT, in which cDFT is used to define the charge-transfer component of the interaction energy and SAPT defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. 692 Lao K. U., Herbert J. M.
    J. Chem. Theory Comput.
    (2016), 12, pp. 2569.
    Link

  • The electrostatically-embedded many-body expansion 267 Dahlke E. E., Truhlar D. G.
    J. Chem. Theory Comput.
    (2007), 3, pp. 46.
    Link
    , 1057 Richard R. M., Lao K. U., Herbert J. M.
    J. Chem. Phys.
    (2014), 141, pp. 014108.
    Link
    , 1058 Richard R. M., Lao K. U., Herbert J. M.
    Acc. Chem. Res.
    (2014), 47, pp. 2828.
    Link
    , 695 Lao K. U. et al.
    J. Chem. Phys.
    (2016), 144, pp. 164105.
    Link
    and the fragment molecular orbital method, 624 Kitaura K. et al.
    Chem. Phys. Lett.
    (1999), 313, pp. 701.
    Link
    for decomposing large clusters into small numbers of monomers, facilitating larger calculations.

  • The Ab Initio Frenkel Davydov Model, 864 Morrison A. F., You Z.-Q., Herbert J. M.
    J. Chem. Theory Comput.
    (2014), 10, pp. 5366.
    Link
    , 861 Morrison A. F., Herbert J. M.
    J. Phys. Chem. Lett.
    (2015), 6, pp. 4390.
    Link
    a low-order scaling, highly parallelizable approach to computing excited state properties of liquids, crystals, and aggregates.

  • TDDFT for molecular interactions [TDDFT(MI)], an excited-state extension of SCF MI that offers a reduced-cost way to compute excited states in molecular clusters, crystals, and aggregates. 760 Liu J., Herbert J. M.
    J. Chem. Phys.
    (2015), 143, pp. 034106.
    Link
    , 761 Liu J., Herbert J. M.
    J. Chem. Theory Comput.
    (2016), 12, pp. 157.
    Link
    , 502 Herbert J. M. et al.
    Acc. Chem. Res.
    (2016), 49, pp. 931.
    Link

  • The ALMO-CIS and ALMO-CIS+CT models (also applicable to TDDFT/TDA) for computing a substantial number of excited states in large molecular clusters. 225 Closser K. D. et al.
    J. Chem. Theory Comput.
    (2015), 11, pp. 5791.
    Link
    , 386 Ge Q. et al.
    J. Chem. Phys.
    (2017), 146, pp. 044111.
    Link

Other fragment-based approaches in Q-Chem include:

  • The Effective Fragment Potential (EFP) method 388 Ghosh D. et al.
    J. Phys. Chem. A
    (2010), 114, pp. 12739.
    Link
    developed by Prof. Lyudmila Slipchenko at Purdue University and Prof. Anna Krylov at USC (see Section 11.5)

  • Fragment-based approaches to diabatic states and electronic couplings (see Section 10.14.3)