Example 7.57 EOM-EE-OD and EOM-EE-CCSD calculations of the singlet excited states of formaldehyde.
$molecule 0 1 O C 1 R1 H 2 R2 1 A H 2 R2 1 A 3 180. R1 = 1.4 R2 = 1.0 A = 120. $end $rem METHOD eom-od BASIS 6-31+g EE_STATES [2,2,2,2] $end @@@ $molecule read $end $rem METHOD eom-ccsd BASIS 6-31+g EE_SINGLETS [2,2,2,2] EE_TRIPLETS [2,2,2,2] $end
Example 7.58 EOM-EE-CCSD calculations of the singlet excited states of water using Cholesky decomposition.
$molecule 0 1 O 0.000000 0.000000 -0.069336 H -0.759081 0.000000 -0.665332 H 0.759081 0.000000 -0.665332 $end $rem METHOD eom-ccsd BASIS aug-cc-pVDZ PURECART 1112 N_FROZEN_CORE fc CC_T_CONV 4 CC_E_CONV 6 CHOLESKY_TOL 2 using CD/1e-2 threshold EE_SINGLETS [2,2,0,0] $end
Example 7.59 EOM-SF-CCSD calculations for methylene from high-spin B reference.
$molecule 0 3 C H 1 1.1167 H 1 1.1167 2 102.07 $end $rem METHOD eom-ccsd BASIS 6-31G* SCF_GUESS core SF_STATES [2,0,0,2] Two singlet A1 states and singlet and triplet B2 states $end
Example 7.60 EOM-SF-MP2 calculations for SiH from high-spin B reference. Both energies and properties are computed.
$molecule 0 3 Si H 1 1.5145 H 1 1.5145 2 92.68 $end $rem BASIS = cc-pVDZ UNRESTRICTED = true SCF_CONVERGENCE = 8 METHOD = eom-mp2 SF_STATES = [1,1,0,0] CC_EOM_PROP_TE = true ! Compute <S^2> of excited states $end
Example 7.61 EOM-IP-CCSD calculations for NO using closed-shell anion reference.
$molecule -1 1 N O 1 r1 O 1 r2 2 A2 O 1 r2 2 A2 3 180.0 r1 = 1.237 r2 = 1.237 A2 = 120.00 $end $rem METHOD eom-ccsd BASIS 6-31G* IP_STATES [1,1,2,1] ground and excited states of the radical $end
Example 7.62 EOM-IP-CCSD calculation using FNO with OCCT=99%.
$molecule 0 1 O H 1 1.0 H 1 1.0 2 100. $end $rem METHOD eom-ccsd BASIS 6-311+G(2df,2pd) IP_STATES [1,0,1,1] CC_FNO_THRESH 9900 99% of the total natural population recovered $end
Example 7.63 EOM-EE-CC2, EOM-EA-CC2, EOM-IP-CC2 calculations for water.
$molecule 0 1 O 0.00000000 0.00000000 -0.69415386 H -1.34476814 0.00000000 0.34707675 H 1.34476814 0.00000000 0.34707675 $end $rem INPUT_BOHR ¯¯true METHOD ¯¯eom-cc2 BASIS ¯¯6-31g EE_STATES ¯¯[1,1,1,1] EA_STATES ¯¯[1,0,1,1] IP_STATES ¯¯[1,0,1,1] $end
Example 7.64 EOM-EE-MP2T calculation of the H excitation energies.
$molecule 0 1 H 0.0000 0.0000 0.0000 H 0.0000 0.0000 0.7414 $end $rem THRESH 16 BASIS cc-pvdz METHOD eom-mp2t EE_STATES [3,0,0,0,0,0,0,0] $end
Example 7.65 EOM-IP-MP2 calculation of the three low lying ionized states of the phenolate anion.
$molecule 0 1 C -0.189057 -1.215927 -0.000922 H -0.709319 -2.157526 -0.001587 C 1.194584 -1.155381 -0.000067 H 1.762373 -2.070036 -0.000230 C 1.848872 0.069673 0.000936 H 2.923593 0.111621 0.001593 C 1.103041 1.238842 0.001235 H 1.595604 2.196052 0.002078 C -0.283047 1.185547 0.000344 H -0.862269 2.095160 0.000376 C -0.929565 -0.042566 -0.000765 O -2.287040 -0.159171 -0.001759 H -2.663814 0.725029 0.001075 $end $rem METHOD eom-mp2 BASIS 6-31+g(d) THRESH 14 IP_STATES [3] $end
Example 7.66 EOM-EA-CCSD calculation of CN using user-specified guess.
$molecule +1 1 C N 1 1.1718 $end $rem METHOD = eom-ccsd BASIS = 6-311+g* EA_STATES = [1,1,1,1] CC_EOM_PROP = true EOM_USER_GUESS = true ! attach to HOMO, HOMO+1, and HOMO+3 $end $eom_user_guess 1 2 4 $end
Example 7.67 DSF-CIDT calculation of methylene starting with quintet reference.
$molecule 0 5 C H 1 CH H 1 CH 2 HCH CH = 1.07 HCH = 111.0 $end $rem METHOD cisdt BASIS 6-31G DSF_STATES [0,2,2,0] EOM_NGUESS_SINGLES 0 EOM_NGUESS_DOUBLES 2 $end
Example 7.68 EOM-EA-CCSD job for cyano radical. We first do Hartree-Fock calculation for the cation in the basis set with one extremely diffuse orbital (EOM_FAKE_IPEA) and use these orbitals in the second job. We need make sure that the diffuse orbital is occupied using the OCCUPIED keyword. No SCF iterations are performed as the diffuse electron and the molecular core are uncoupled. The attached states show up as “excited” states in which electron is promoted from the diffuse orbital to the molecular ones.
$molecule +1 1 C N 1 bond bond 1.1718 $end $rem METHOD hf BASIS 6-311+G* PURECART 111 SCF_CONVERGENCE 8 EOM_FAKE_IPEA true $end @@@ $molecule 0 2 C N 1 bond bond 1.1718 $end $rem BASIS 6-311+G* PURECART 111 SCF_GUESS read MAX_SCF_CYCLES 0 METHOD eom-ccsd CC_DOV_THRESH 2501 use thresh for CC iters with convergence problems EA_STATES [2,0,0,0] EOM_FAKE_IPEA true $end $occupied 1 2 3 4 5 6 14 1 2 3 4 5 6 $end
Example 7.69 EOM-DIP-CCSD calculation of methylene with charged cage stabilization.
$molecule -2 1 C 0.000000 0.000000 0.106788 H -0.989216 0.000000 -0.320363 H 0.989216 0.000000 -0.320363 $end $rem METHOD = eom-ccsd BASIS = 6-311g(d,p) SCF_ALGORITHM = diis_gdm SYMMETRY = false CC_SYMMETRY = false DIP_SINGLETS = [1] ! Compute one EOM-DIP singlet state DIP_TRIPLETS = [1] ! Compute one EOM-DIP triplet state EOM_DAVIDSON_CONVERGENCE = 5 CC_EOM_PROP = true ! Compute excited state properties ADD_CHARGED_CAGE = 2 ! Install a charged sphere around the molecule CAGE_RADIUS = 225 ! Radius = 2.25 A CAGE_CHARGE = 500 ! Charge = +5 a.u. CAGE_POINTS = 100 ! Place 100 point charges CC_MEMORY = 256 ! Use 256Mb of memory, increase for larger jobs $end
Example 7.70 EOM-EE-CCSD calculation of excited states in NO using scaled nuclear charge stabilization method.
$molecule -1 1 N -1.08735 0.0000 0.0000 O 1.08735 0.0000 0.0000 $end $rem METHOD = eom-ccsd BASIS = 6-31g INPUT_BOHR = true SYMMETRY = false CC_SYMMETRY = false EE_SINGLETS = [2] ! Compute two EOM-EE singlet excited states EE_TRIPLETS = [2] ! Compute two EOM-EE triplet excited states CC_REF_PROP = true ! Compute ground state properties CC_EOM_PROP = true ! Compute excited state properties CC_MEMORY = 256 ! Use 256Mb of memory, increase for larger jobs SCALE_NUCLEAR_CHARGE = 180 ! Adds +1.80e charge to the molecule $end
Example 7.71 EOM-DEA-CCSD calculation of ozone with EOM_PRECONV_DOUBLES.
$molecule +2 1 O O 1 1.2724 O 2 1.2724 1 116.8 $end $rem METHOD = eom-ccsd BASIS = 6-31G* DEA_SINGLETS = [1,0,0,0] DEA_TRIPLETS = [0,0,0,1] EOM_PRECONV_DOUBLES = true $end
Example 7.72 EOM-EE-CCSD calculation for formamide with user-specified guess requesting the EE transition from the occupied orbital number 12 (2 ) to the virtual orbital number 1 (11 ).
$molecule 0 1 N 1.0706214490 -0.1462996030 0.0000000000 C -0.1838756809 0.3832287690 0.0000000000 O -1.2178351723 -0.2734201303 0.0000000000 H 1.8945772136 0.4351761203 0.0000000000 H 1.1761147729 -1.1515954431 0.0000000000 H -0.1740335498 1.4879608698 0.0000000000 $end $rem METHOD EOM-CCSD BASIS 6-31+G(d,p) CC_MEMORY 3000 ccman2 memory MEM_STATIC 250 CC_T_CONV 4 T-amplitudes convergence threshold CC_E_CONV 6 Energy convergence threshold EE_STATES [0,1] Calculate 1 A" states EOM_DAVIDSON_CONVERGENCE 5 Convergence threshold for the Davidson procedure !EOM_USER_GUESS true Use user guess from $eom_user_guess section $end $eom_user_guess 12 1 $end
Example 7.73 CAP-augmented EOM-EA-CCSD calculation for N. aug-cc-pVTZ basis augmented by the 333 diffuse functions placed in the COM. Two EA states are computed for CAP strength .
$molecule 0 1 N 0.0 0.0 -0.54875676501 N 0.0 0.0 0.54875676501 Gh 0.0 0.0 0.0 $end $rem COMPLEX_CCMAN 1 engage complex_ccman METHOD EOM-CCSD BASIS gen use general basis EA_STATES [0,0,2,0,0,0,0,0] compute electron attachment energies CC_MEMORY 2000 ccman2 memory MEM_TOTAL 4000 CC_EOM_PROP true compute excited state properties $end $complex_ccman CS_HF 1 Use complex HF CAP_ETA 200 Set strength of CAP potential 0.002 CAP_X 2760 Set length of the box along x dimension CAP_Y 2760 Set length of the box along y dimension CAP_Z 4880 Set length of the box along z dimension CAP_TYPE 1 Use cuboid CAP $end $basis N 0 aug-cc-pvtz **** Gh 0 S 1 1.000000 2.88000000E-02 1.00000000E+00 S 1 1.000000 1.44000000E-02 1.00000000E+00 S 1 1.000000 0.72000000E-02 1.00000000E+00 P 1 1.000000 2.45000000E-02 1.00000000E+00 P 1 1.000000 1.22000000E-02 1.00000000E+00 P 1 1.000000 0.61000000E-02 1.00000000E+00 D 1 1.000000 0.755000000E-01 1.00000000E+00 D 1 1.000000 0.377500000E-01 1.00000000E+00 D 1 1.000000 0.188750000E-01 1.00000000E+00 **** $end
Example 7.74 CAP-EOM-EE calculation of water, with wave-function analysis of state and transition properties.
$molecule 0 1 O 0.00000000 0.00000000 0.13594219 H 0.00000000 -1.44761450 -1.07875060 H 0.00000000 1.44761450 -1.07875060 $end $rem METHOD eom-ccsd BASIS 6-31G** CC_MEMORY 2000 MEM_TOTAL 2500 SCF_CONVERGENCE 12 CC_CONVERGENCE 11 EOM_DAVIDSON_CONVERGENCE 11 CC_EOM_PROP TRUE CC_FULLRESPONSE FALSE CC_TRANS_PROP TRUE COMPLEX_CCMAN 1 EE_STATES [1,0,2,0] INPUT_BOHR TRUE ! WFA KEYWORDS STATE_ANALYSIS true MOLDEN_FORMAT true NTO_PAIRS 4 POP_MULLIKEN true $end $complex_ccman CS_HF 1 CAP_TYPE 1 CAP_ETA 10000 CAP_X 2000 CAP_Y 2500 CAP_Z 2500 $end
Example 7.75 CAP-EOM-EA-CCSD calculation of shape resonance in CO using smooth Voronoi CAP.
$molecule 0 1 C 0.0000 0.0000 0.564 O 0.0000 0.0000 -0.564 Gh 0.0000 0.0000 0.000 $end $rem METHOD eom-ccsd BASIS gen EA_STATES [0,0,5,0] COMPLEX_CCMAN 1 XC_GRID 000099000590 N_FROZEN_CORE FC $end $complex_ccman CS_HF 1 CAP_TYPE 2 CAP_ETA 640 CAP_X 2765 $end $basis C 0 aug-cc-pvtz **** O 0 aug-cc-pvtz **** Gh 0 S 1 1.00 0.0588900 1.0000000 S 1 1.00 0.0294450 1.0000000 S 1 1.00 0.0147225 1.0000000 P 1 1.00 0.0238575 1.0000000 P 1 1.00 0.01192875 1.0000000 P 1 1.00 0.005964375 1.0000000 D 1 1.00 0.0785000 1.0000000 D 1 1.00 0.0392500 1.0000000 D 1 1.00 0.0196250 1.0000000 **** $end
Example 7.76 Projected CAP-EOM-EE-CCSD calculation of H, with CAP added at the CCSD step.
$molecule 0 1 H 0.0000 0.0000 0.0000 H 0.0000 0.0000 0.7414 $end $rem METHOD eom-ccsd BASIS cc-pvdz EE_STATES [5,0,0,0,0,0,0,0] COMPLEX_CCMAN 1 THRESH 16 $end $complex_ccman PROJ_CAP 1 CS_HF 0 CAP_ETA 1000 CAP_X 2000 CAP_Y 2000 CAP_Z 2000 $end
Example 7.77 Projected CAP-EOM-EA-MP2T trajectory generation for the first three states of H, with CAP applied at the EOM step.
$molecule 0 1 H 0.0000 0.0000 0.0000 H 0.0000 0.0000 0.7414 $end $rem METHOD eom-mp2t BASIS cc-pvdz EA_STATES [3,0,0,0,0,0,0,0] COMPLEX_CCMAN 1 THRESH 16 $end $complex_ccman PROJ_CAP 2 ETA_STEP 100 ETA step CAP_ETA 1000 Initial ETA value NSTEPS 20 Number of steps along the trajectory CAP_X 2000 CAP_Y 2000 CAP_Z 2000 $end
Example 7.78 Projected CAP-EOM-EA trajectory generation. CAP is projected onto the first five states of N.
$molecule 0 1 N 0.0 0.0 -0.54875676501 N 0.0 0.0 0.54875676501 Gh 0.0 0.0 0.0 $end $rem COMPLEX_CCMAN 1 METHOD EOM-CCSD BASIS gen EA_STATES [0,0,5,0,0,0,0,0] $end $complex_ccman PROJ_CAP 3 Project CAP onto set of real EOM eigenvectors !PROJ_PROP 1 Request first-order perturbative correction for each point CAP_ETA 50 ETA_STEP 50 NSTEPS 100 CAP_X 2760 CAP_Y 2760 CAP_Z 4880 CAP_TYPE 1 $end $basis N 0 aug-cc-pvtz **** Gh 0 S 1 1.000000 2.88000000E-02 1.00000000E+00 S 1 1.000000 1.44000000E-02 1.00000000E+00 S 1 1.000000 0.72000000E-02 1.00000000E+00 P 1 1.000000 2.45000000E-02 1.00000000E+00 P 1 1.000000 1.22000000E-02 1.00000000E+00 P 1 1.000000 0.61000000E-02 1.00000000E+00 D 1 1.000000 0.755000000E-01 1.00000000E+00 D 1 1.000000 0.377500000E-01 1.00000000E+00 D 1 1.000000 0.188750000E-01 1.00000000E+00 **** $end
Example 7.79 CBF-EOM-EA-CCSD calculations of water.
$molecule 0 1 H 0.00000 0.53835 -0.78304 O 0.00000 -0.01840 0.00000 H 0.00000 0.53835 0.78304 $end $rem METHOD ccsd BASIS cc-pvdz ! important: use gen basis set COMPLEX_BASIS aug-cc-pvdz ! important: use gen basis set PURECART 1111 EA_STATES [1,0,0,1] COMPLEX_CCMAN true COMPLEX_EXPONENTS true COMPLEX_THETA 100 COMPLEX_SCF 1 COMPLEX_SCF_GUESS true GEN_SCFMAN true COMPLEX_METSCF true COMPLEX_N_ELECTRONS false N_FROZEN_CORE false SCF_CONVERGENCE 11 CC_CONVERGENCE 10 EOM_DAVIDSON_CONVERGENCE 10 THRESH 14 $end $complex_ccman cs_alpha 100 $end
Example 7.80 CAP-EOM-EE-CC2 calculation of water using Resolution-of-the-Identity approximation.
$molecule 0 1 H 0.00000 0.53835 -0.78304 O 0.00000 -0.01840 0.00000 H 0.00000 0.53835 0.78304 $end $rem METHOD cc2 BASIS cc-pvdz AUX_BASIS rimp2-cc-pvdz EA_STATES [1,0,0,1] COMPLEX_CCMAN true N_FROZEN_CORE false SCF_CONVERGENCE 11 CC_CONVERGENCE 10 EOM_DAVIDSON_CONVERGENCE 10 $end $complex_ccman CS_HF 1 CAP_ETA 1000 CAP_X 2760 CAP_Y 2760 CAP_Z 4970 CAP_TYPE 1 $end
Example 7.81 Formaldehyde, calculating EOM-IP-CCSD-S(D) and EOM-IP-MP2-S(D) energies of 3 valence ionized states.
$molecule 0 1 C H 1 1.096135 H 1 1.096135 2 116.191164 O 1 1.207459 2 121.904418 3 -180.000000 0 $end $rem METHOD eom-ccsd-s(d) BASIS 6-31G* IP_STATES [1,0,1,1] $end @@@ $molecule read $end $rem METHOD eom-mp2-s(d) BASIS 6-31G* IP_STATES [1,0,1,1] $end
Example 7.82 Formaldehyde, calculating EOM-EE-CCSD states with C-PCM method.
$molecule 0 1 O C 1 1.4 H 2 1.0 1 120. H 2 1.0 1 120. 3 180.0 $end $rem METHOD eom-ccsd BASIS cc-pvdz EE_STATES [4] SOLVENT_METHOD pcm $end $pcm theory cpcm $end $solvent dielectric 4.34 dielectric_infi 1.829 $end
Example 7.83 NO, calculating EOM-IP-CCSD states with C-PCM method.
$molecule -1 1 N1 O2 N1 RNO O3 N1 RNO O2 AONO RNO = 1.305 AONO = 106.7 $end $rem METHOD eom-ccsd BASIS cc-pvdz IP_STATES [2] SOLVENT_METHOD pcm $end $pcm theory cpcm $end $solvent dielectric 4.34 dielectric_infi 1.829 $end