Double-ionization potential (DIP) is another non-electron-conserving variant of
EOM-CCSD.
648
J. Chem. Phys.
(2011),
135,
pp. 084109.
Link
,
649
J. Chem. Phys.
(2012),
136,
pp. 244109.
Link
In DIP, target states are reached by detaching two electrons from the reference state:
(7.55) |
and the excitation operator has the following form:
(7.56) |
As a reference state in the EOM-DIP calculations one usually takes a well-behaved closed-shell state. EOM-DIP is a useful tool for describing molecules with electronic degeneracies of the type “ electrons on degenerate orbitals”. The simplest examples of such systems are diradicals with two-electrons-on-two-orbitals pattern. Moreover, DIP is a preferred method for four-electrons-on-three-orbitals wave functions.
Accuracy of the EOM-DIP-CCSD method is similar to accuracy of other EOM-CCSD models, i.e., 0.1–0.3 eV. The scaling of EOM-DIP-CCSD is , analogous to that of other EOM-CCSD methods. However, its computational cost is less compared to, e.g., EOM-EE-CCSD, and it increases more slowly with the basis set size. An EOM-DIP calculation is invoked by using DIP_STATES, or DIP_SINGLETS and DIP_TRIPLETS. In certain circumstances, the DIP_AA_STATES, DIP_BB_STATES, DIP_BA_STATES keywords can be used.
Note: The performance of EOM-DIP may be poor if the reference state is unstable with respect to electron detachment. See Section 7.10.11 for details.
Note: In some applications of EOM-DIP-CCSD, only 2 operators were included in the EOM part. These calculations correspond to energies obtained from EOM_PRECONV_DOUBLES = TRUE calculation.