Example 8.6 Computing the HF/fit-LANL2DZ energy of AgCl at a bond length of 2.4 Å.
$molecule 0 1 Ag Cl Ag r r = 2.4 $end $rem METHOD hf Hartree-Fock calculation ECP fit-lanl2dz Using the Hay-Wadt ECP BASIS lanl2dz And the matching basis set $end
Example 8.7 Computing the single point energy of HI with B3LYP/def2-SV(P) (using def2-ECP for I).
$molecule 0 1 H 0.0 0.0 0.0 I 0.0 0.0 1.5 $end $rem METHOD b3lyp BASIS def2-sv(p) ECP def2-ecp SYMMETRY false SYM_IGNORE true $end
Example 8.8 Optimization of the structure of Se using HF/fit-LANL2DZ, followed by a single-point energy calculation at the MP2/fit-LANL2DZ level.
$molecule 0 1 x1 x2 x1 xx Se1 x1 sx x2 90. Se2 x1 sx x2 90. Se1 90. Se3 x1 sx x2 90. Se2 90. Se4 x1 sx x2 90. Se3 90. Se5 x2 sx x1 90. Se1 45. Se6 x2 sx x1 90. Se5 90. Se7 x2 sx x1 90. Se6 90. Se8 x2 sx x1 90. Se7 90. xx = 1.2 sx = 2.8 $end $rem JOBTYPE opt METHOD hf ECP fit-lanl2dz BASIS lanl2dz $end @@@ $molecule read $end $rem METHOD mp2 MP2 correlation energy ECP fit-lanl2dz Hay-Wadt ECP and basis BASIS lanl2dz SCF_GUESS read Read in the MOs $end
Example 8.9 Computing the HF geometry of CdBr using the Stuttgart relativistic ECPs. The small-core ECP and basis are employed on the Cd atom and the large-core ECP and basis on the Br atoms.
$molecule 0 1 Cd Br1 Cd r Br2 Cd r Br1 180.0 r = 2.4 $end $rem JOBTYPE opt Geometry optimization METHOD hf Hartree-Fock theory ECP gen Combine ECPs BASIS gen Combine basis sets PURECART 1 Use pure d functions $end $ecp Cd srsc **** Br srlc **** $end $basis Cd srsc **** Br srlc **** $end