X

Search Results

Searching....

5.12 Unconventional DFT Methods

5.12.3 Thermally-Assisted-Occupation DFT (TAO-DFT)

(December 11, 2025)

Aiming to study the ground-state properties of large, strongly correlated systems with minimum computational complexity, Prof. Jeng-Da Chai recently developed thermally-assisted-occupation density functional theory (TAO-DFT). 222 Chai J.-D.
J. Chem. Phys.
(2012), 136, pp. 154104.
Link
Unlike conventional multi-reference methods, the computational complexity of TAO-DFT increases very insignificantly with the size of the active space (i.e., an active space restriction is not needed for TAO-DFT calculations), and TAO-DFT appears to be very promising for the study of large poly-radical systems. TAO-DFT is a DFT scheme with fractional orbital occupations produced by the Fermi-Dirac distribution, controlled by a fictitious temperature θ, and existing XC functionals (e.g., LDA 222 Chai J.-D.
J. Chem. Phys.
(2012), 136, pp. 154104.
Link
, GGAs 223 Chai J.-D.
J. Chem. Phys.
(2014), 140, pp. 18A521.
Link
, global hybrid GGAs 224 Chai J.-D.
J. Chem. Phys.
(2017), 146, pp. 044102.
Link
or range-separated hybrid GGAs 224 Chai J.-D.
J. Chem. Phys.
(2017), 146, pp. 044102.
Link
, 794 Li S., Chai J.-D.
J. Chem. Theory Comput.
(2025), 21, pp. 9538.
Link
) can be used in TAO-DFT. The computational cost of the method is similar to that of Kohn-Sham DFT for single-point energy calculations and analytical nuclear gradients, and reduces to the cost of Kohn-Sham DFT in the absence of strong static correlation effects.

There are several $rem variables that are used for TAO-DFT.

TAO_DFT

TAO_DFT
       Controls whether to use TAO-DFT.
TYPE:
       Boolean
DEFAULT:
       FALSE
OPTIONS:
       FALSE Do not use TAO-DFT TRUE Use TAO-DFT
RECOMMENDATION:
       NONE

TAO_DFT_THETA

TAO_DFT_THETA
       The parameter m (the mantissa) for the value of the fictitious temperature θ=m×10-nEh in TAO-DFT.
TYPE:
       INTEGER
DEFAULT:
       7
OPTIONS:
       m Customize the mantissa for the fictitious temperature.
RECOMMENDATION:
       NONE

TAO_DFT_THETA_NDP

TAO_DFT_THETA_NDP
       The parameter n (the exponent) for the value of the fictitious temperature θ=m×10-nEh in TAO-DFT.
TYPE:
       INTEGER
DEFAULT:
       3
OPTIONS:
       n Customize the exponential power for the fictitious temperature.
RECOMMENDATION:
       NONE

Note that setting TAO_DFT_THETA = 0 recovers ordinary Kohn-Sham DFT. 222 Chai J.-D.
J. Chem. Phys.
(2012), 136, pp. 154104.
Link
In addition to the XC functional, a functional Eθ[ρ] is needed in TAO-DFT. Currently available in Q-Chem are an LDA version 222 Chai J.-D.
J. Chem. Phys.
(2012), 136, pp. 154104.
Link
(the ETheta_LDA functional) as well as a version based on the gradient expansion approximation 223 Chai J.-D.
J. Chem. Phys.
(2014), 140, pp. 18A521.
Link
(GEA) (the ETheta_GEA functional), and the latter may be substituted for the former in the sample jobs below. Furthermore, a functional Ex,θ[ρ] is also needed in TAO-DFT for global hybrid (GH) GGAs. Currently available in Q-CHEM is an LDA version (the EThetaX_LDA functional) 224 Chai J.-D.
J. Chem. Phys.
(2017), 146, pp. 044102.
Link
. Moreover, two functionals Ex,θSR[ρ] and Ex,θLR[ρ] are needed in TAO-DFT for range-separated hybrid (RSH) GGAs, and their LDA versions (the SR_ETHETAX_LDA and LR_ETHETAX_LDA functionals) are now available in Q-CHEM 794 Li S., Chai J.-D.
J. Chem. Theory Comput.
(2025), 21, pp. 9538.
Link
. Note that both Ex,θSR[ρ] and Ex,θLR[ρ] depend on the range-separation parameter ω, and Ex,θSR[ρ] reduces to Ex,θ[ρ] when ω=0. Therefore, the SR_ETHETAX_LDA functional with ω=0 is another LDA version of Ex,θ[ρ], denoted as ETHETAX19_LDA.

To improve the performance of TAO-DFT functionals, the B97-type functionals with the semi-empirical dispersion correction based on the D4 model are optimized in TAO-DFT using the system-independent fictitious temperatures, resulting in TAO-B97-D4, TAO-B97X-D4 and TAO-ωB97X-D4 794 Li S., Chai J.-D.
J. Chem. Theory Comput.
(2025), 21, pp. 9538.
Link
. With the constraint θ=0, the B97-type RSH functional is also optimized in KS-DFT, resulting in KS-ωB97X-D4 794 Li S., Chai J.-D.
J. Chem. Theory Comput.
(2025), 21, pp. 9538.
Link
(see Example 5.6.3 for the usage).

Example 5.29  TAO-LDA calculation on Be atom

$molecule
   0 1
   Be
$end

$rem
   BASIS               6-31G*
   EXCHANGE            gen
   TAO_DFT             true
   TAO_DFT_THETA       7    ! default, theta=7 mhartree
   TAO_DFT_THETA_NDP   3    ! default
$end

$xc_functional
   X   S             1.0
   C   PW92          1.0
   X   ETheta_LDA    1.0
$end

Example 5.30  TAO-PBE, spin-restricted calculation on stretched N2

$molecule
   0 1
   N1
   N2 N1 4.5
$end

$rem
   BASIS               6-31G*
   EXCHANGE            gen
   TAO_DFT             true
   TAO_DFT_THETA       40  ! theta = 40 mhartree
   TAO_DFT_THETA_NDP   3
$end

$xc_functional
   X PBE         1.0
   C PBE         1.0
   X ETheta_LDA  1.0
$end

Example 5.31  TAO-PBE, spin-unrestricted calculation on stretched N2

$molecule
   0 1
   N1
   N2 N1 5.0
$end

$rem
   JOBTYPE             opt
   UNRESTRICTED        true
   BASIS               6-31G*
   EXCHANGE            gen
   TAO_DFT             true
   TAO_DFT_THETA       40  ! theta = 40 mhartrees
   TAO_DFT_THETA_NDP   3   ! can omit this line
   SCF_GUESS           gwh
   SCF_GUESS_MIX       3   ! mix in 30% LUMO in alpha to break symmetry
$end

$xc_functional
   X PBE         1.0
   C PBE         1.0
   X ETheta_LDA  1.0
$end

Example 5.32  TAO-PBE0 calculation on H2 molecule

$molecule
   0 1
   H1
   H2 H1 1.00
$end

$rem
   JOBTYPE             opt
   UNRESTRICTED        true
   BASIS               6-31G*
   EXCHANGE            gen
   TAO_DFT             true
   TAO_DFT_THETA       20  ! theta = 20 mhartrees
   TAO_DFT_THETA_NDP   3   ! can omit this line
   SCF_GUESS           gwh
   SCF_GUESS_MIX       3   ! mix in 30% LUMO in alpha to break symmetry
$end

$xc_functional
   X ETheta_LDA    1.00
   X EThetaX_LDA   0.25
   X HF            0.25
   X PBE           0.75
   C PBE           1.00
$end

Example 5.33  TAO-B3LYP calculation on H2 molecule

$molecule
   0 1
   H1
   H2 H1 1.00
$end

$rem
   JOBTYPE             opt
   UNRESTRICTED        true
   BASIS               6-31G*
   EXCHANGE            gen
   TAO_DFT             true
   TAO_DFT_THETA       174 ! theta = 17.4 mhartrees
   TAO_DFT_THETA_NDP   4
   SCF_GUESS           gwh
   SCF_GUESS_MIX       3   ! mix in 30% LUMO in alpha to break symmetry
$end

$xc_functional
   X ETheta_LDA    1.00
   X EThetaX_LDA   0.20
   X HF            0.20
   X Slater        0.08
   X Becke88       0.72
   C LYP           0.81
   C VWN1RPA       0.19
$end

Example 5.34  TAO-B97-D4 calculation on H2 molecule

$molecule
0 1
H 0.00 0.00 0.00
H 1.00 0.00 0.00
$end

$rem
JOBTYPE              = sp
unrestricted         = FALSE
scf_guess            = SAD
scf_guess_mix        = 0
scf_algorithm        = diis
max_scf_cycles       = 300
GEN_SCFMAN           = FALSE
xc_grid              = 000075000302
scf_convergence      = 8
thresh               = 14
BASIS                = 6-31G(d)
TAO_DFT              = true
TAO_DFT_THETA        = 959717
TAO_DFT_THETA_NDP    = 8
EXCHANGE             = gen
symmetry             = false
sym_ignore           = true
basis_lin_dep_thresh = 8
DFT_D                = D4
DFT_D4_A1            = 50000000
DFT_D4_A2            = 350000000
DFT_D4_S6            = 100000000
DFT_D4_S8            = 172371500
DFT_D4_S9            = 100000000
DFT_D4_S10           = 0
$end

$XC_functional
X ETheta_LSDA         1.000000
X TAO_B97             1.000000
C TAO_B97             1.000000
$end

Example 5.35  TAO-B97X-D4 calculation on H2 molecule

$molecule
0 1
H 0.00 0.00 0.00
H 1.00 0.00 0.00
$end

$rem
JOBTYPE              = sp
unrestricted         = FALSE
scf_guess            = SAD
scf_guess_mix        = 0
scf_algorithm        = diis
max_scf_cycles       = 300
GEN_SCFMAN           = FALSE
xc_grid              = 000075000302
scf_convergence      = 8
thresh               = 14
BASIS                = 6-31G(d)
TAO_DFT              = true
TAO_DFT_THETA        = 240964
TAO_DFT_THETA_NDP    = 7
EXCHANGE             = gen
symmetry             = false
sym_ignore           = true
basis_lin_dep_thresh = 8
DFT_D                = D4
DFT_D4_A1            = 50000000
DFT_D4_A2            = 400000000
DFT_D4_S6            = 100000000
DFT_D4_S8            = 170811200
DFT_D4_S9            = 100000000
DFT_D4_S10           = 0
$end

$XC_functional
X ETheta_LSDA         1.000000
X ETHETAX_LSDA19      0.325932
X HF                  0.325932
X TAO_B97X            1.000000
C TAO_B97X            1.000000
$end

Example 5.36  TAO-ωB97X-D4 calculation on H2 molecule

$molecule
0 1
H 0.00 0.00 0.00
H 1.00 0.00 0.00
$end

$rem
JOBTYPE              = sp
unrestricted         = FALSE
scf_guess            = SAD
scf_guess_mix        = 0
scf_algorithm        = diis
max_scf_cycles       = 300
GEN_SCFMAN           = FALSE
xc_grid              = 000075000302
scf_convergence      = 8
thresh               = 14
BASIS                = 6-31G(d)
TAO_DFT              = true
TAO_DFT_THETA        = 502796
TAO_DFT_THETA_NDP    = 7
EXCHANGE             = gen
LRC_DFT              = TRUE
COMBINE_K            = TRUE
OMEGA                = 300
symmetry             = false
sym_ignore           = true
basis_lin_dep_thresh = 8
DFT_D                = D4
DFT_D4_A1            = 65000000
DFT_D4_A2            = 300000000
DFT_D4_S6            = 100000000
DFT_D4_S8            = 131716300
DFT_D4_S9            = 100000000
DFT_D4_S10           = 0
$end

$XC_functional
X ETheta_LSDA         1.000000
X LR_ETHETAX_LSDA     1.000000
X SR_ETHETAX_LSDA     0.179379
X HF                  0.179379
X TAO_wB97X           1.000000
C TAO_wB97X           1.000000
$end