1.3 Q-Chem Features

1.3.6 New Features in Q-Chem 4.2

  • Input file changes:

    • New keyword METHOD simplifies input in most cases by replacing the pair of keywords EXCHANGE and CORRELATION (see Chapter 4).

    • Keywords for requesting excited-state calculations have been modified and simplified (see Chapter 7 for details).

    • Keywords for solvation models have been modified and simplified (see Section 12.2 for details).

  • New features for NMR calculations including spin-spin couplings (J. Kussmann, A. Luenser, and C. Ochsenfeld; Section 11.13.1).

  • New built-in basis sets (see Chapter 8).

  • New features and performance improvements in EOM-CC:

    • EOM-CC methods extended to treat meta-stable electronic states (resonances) via complex scaling and complex absorbing potentials (D. Zuev, T.-C. Jagau, Y. Shao, and A. I. Krylov; Section 7.8.7).

    • New features added to EOM-CC iterative solvers, such as methods for interior eigenvalues and user-specified guesses (D. Zuev; Section 7.8.14).

    • Multi-threaded parallel code for (EOM-)CC gradients and improved CCSD(T) performance.

  • New features and performance improvements in ADC methods (M. Wormit, A. Dreuw):

    • RI-ADC can tackle much larger systems at reduced cost (Section 7.9.2).

    • SOS-ADC methods (Section 7.9.3).

    • State-to-state properties for ADC (Section 7.9.6).

  • SM12 implicit solvation model (A. V. Marenich, D. G. Truhlar, and Y. Shao; Section 12.2.8.1).

  • Interface to NBO v. 6 (Section 11.3).

  • Optimization of MECPs between electronic states at the SOS-CIS(D) and TDDFT levels (X. Zhang and J. M. Herbert; Section 10.6.3).

  • ROKS method for ΔSCF calculations of excited states (T. Kowalczyk and T. Van Voorhis; Section 7.6).

  • Fragment-based initial guess for SCF methods (Section 13.3).

  • Pseudo-fractional occupation number method for improved SCF convergence in small-gap systems (D. S. Lambrecht; Section 4.5.10).

  • Density embedding scheme (B. J. Albrecht, E. Berquist, and D. S. Lambrecht; Section 12.6).

  • New features and enhancements in fragment-based many-body expansion methods (K. U. Lao and J. M. Herbert):

    • XSAPT(KS)+D: A dispersion corrected version of symmetry-adapted perturbation theory for fast and accurate calculation of interaction energies in non-covalent clusters (Section 13.13).

    • Many-body expansion and fragment molecular orbital (FMO) methods for clusters (Section 13.15).

  • Periodic boundary conditions with proper Ewald summation, for energies only (Z. C. Holden and J. M. Herbert; Section 12.3).