The effect of triple excitations to EOM-CCSD energies can be included via perturbation theory in an economical computational scheme. Using EOM-CCSD wave functions as zero-order wave functions, the second order triples correction to the th EOM-EE or SF state is:
| (7.60) |
where and denote occupied orbitals, and and are virtual orbital indices. is the EOM-CCSD excitation energy of the th state. The quantities and are:
| (7.61) | |||||
where, the and are left and right eigen-vectors for th state. Two different choices of the denominator, , define the (dT) and (fT) variants of the correction. In (fT), is just Hartree-Fock orbital energy differences. A more accurate (but not fully orbital invariant) (dT) correction employs the complete three body diagonal of , , as a denominator. For the reference (e.g., a ground-state CCSD wave function), the (fT) and (dT) corrections are identical to the CCSD(2) and CR-CCSD(T) corrections of Piecuch and coworkers.730
The EOM-SF-CCSD(dT) and EOM-SF-CCSD(fT) methods yield a systematic improvement over EOM-SF-CCSD bringing the errors below 1 kcal/mol. For theoretical background and detailed benchmarks, see Ref. 602.
Similar corrections are available for EOM-IP-CCSD,603 where triples correspond to excitations and EOM-EA-CCSD, where triples correspond to excitations.
Note: Due to the orbital non-invariance problem, using (dT) correction is discouraged.
Note: EOM-IP-CCSD(fT) correction is now available both in CCMAN and CCMAN2 .
Triples corrections are requested by using METHOD or EOM_CORR:
METHOD
Specifies the calculation method.
TYPE:
STRING
DEFAULT:
No default value
OPTIONS:
EOM-CCSD(DT)
EOM-CCSD(dT), available for EE, SF, and IP
EOM-CCSD(FT)
EOM-CCSD(fT), available for EE, SF, IP, and EA
EOM-CCSD(ST)
EOM-CCSD(sT), available for IP
RECOMMENDATION:
None
EOM_CORR
Specifies the correlation level.
TYPE:
STRING
DEFAULT:
None
No correction will be computed
OPTIONS:
SD(DT)
EOM-CCSD(dT), available for EE, SF, and IP
SD(FT)
EOM-CCSD(fT), available for EE, SF, IP, and EA
SD(ST)
EOM-CCSD(sT), available for IP
RECOMMENDATION:
None
Note: In CCMAN2, EOM-IP-CCSD(fT) can be computed with or without USE_LIBPT = TRUE.
Example 7.80 EOM-EE-CCSD(fT) calculation of CH.
$molecule
1 1
C
H C CH
CH = 2.137130
$end
$rem
INPUT_BOHR true
METHOD eom-ccsd(ft)
BASIS general
EE_STATES [1,0,1,1]
EOM_DAVIDSON_MAX_ITER 60 increase number of Davidson iterations
$end
$basis
H 0
S 3 1.00
19.24060000 0.3282800000E-01
2.899200000 0.2312080000
0.6534000000 0.8172380000
S 1 1.00
0.1776000000 1.000000000
S 1 1.00
0.0250000000 1.000000000
P 1 1.00
1.00000000 1.00000000
****
C 0
S 6 1.00
4232.610000 0.2029000000E-02
634.8820000 0.1553500000E-01
146.0970000 0.7541100000E-01
42.49740000 0.2571210000
14.18920000 0.5965550000
1.966600000 0.2425170000
S 1 1.00
5.147700000 1.000000000
S 1 1.00
0.4962000000 1.000000000
S 1 1.00
0.1533000000 1.000000000
S 1 1.00
0.0150000000 1.000000000
P 4 1.00
18.15570000 0.1853400000E-01
3.986400000 0.1154420000
1.142900000 0.3862060000
0.3594000000 0.6400890000
P 1 1.00
0.1146000000 1.000000000
P 1 1.00
0.0110000000 1.000000000
D 1 1.00
0.750000000 1.00000000
****
$end
Example 7.81 EOM-SF-CCSD(dT) calculations of methylene.
$molecule 0 3 C H 1 CH H 1 CH 2 HCH CH = 1.07 HCH = 111.0 $end $rem METHOD eom-ccsd(dt) BASIS 6-31G SF_STATES [2,0,0,2] N_FROZEN_CORE 1 N_FROZEN_VIRTUAL 1 $end
Example 7.82 EOM-IP-CCSD(dT) calculations of Mg.
$molecule 0 1 Mg 0.000000 0.000000 0.000000 $end $rem JOBTYPE sp METHOD eom-ccsd(dt) BASIS 6-31g IP_STATES [1,0,0,0,0,1,1,1] $end