Gaussian basis sets violate nuclear cusp conditions [492, 493, 494]. This may lead to large errors in wavefunction at nuclei, particularly for spin density calculations [495]. This problem can be alleviated by using an averaging operator that compute wavefunction density based on constraints that wavefunction must satisfy near Coulomb singularity [496, 497]. The derivation of operators is based on hyper virial theorem [498] and presented in Ref. Rassolov:1996b. Application to molecular spin densities for spin-polarized [497] and DFT [499] wavefunctions show considerable improvement over traditional delta function operator.
One of the simplest forms of such operators is based on the Gaussian weight function that samples the vicinity of a nucleus of charge located at . The parameter has to be small enough to neglect two-electron contributions of the order but large enough for meaningful averaging. The range of values between 0.15–0.3 a.u. is shown to be adequate, with final answer being relatively insensitive to the exact choice of [496, 497]. The value of is chosen by RC_R0 keyword in the units of 0.001 a.u. The averaging operators are implemented for single determinant Hartree-Fock and DFT, and correlated SSG wavefunctions. Spin and charge densities are printed for all nuclei in a molecule, including ghost atoms.
RC_R0
Determines the parameter in the Gaussian weight function used to smooth the density at the nuclei.
TYPE:
INTEGER
DEFAULT:
0
OPTIONS:
0
Corresponds the traditional delta function spin and charge densities
corresponding to a.u.
RECOMMENDATION:
We recommend value of 250 for a typical spit valence basis. For basis sets with increased flexibility in the nuclear vicinity the smaller values of also yield adequate spin density.