The intracules and provide a representation of an electron distribution in either position or momentum space but neither alone can provide a complete description. For a combined position and momentum description an intracule in phase space is required. Defining such an intracule is more difficult since there is no phase space second-order reduced density. However, the second-order Wigner distribution,93
(11.42) |
can be interpreted as the probability of finding an electron at with momentum and another electron at with momentum . [The quantity is often referred to as “quasi-probability distribution” since it is not positive everywhere.]
The Wigner distribution can be used in an analogous way to the second order reduced densities to define a combined position and momentum intracule. This intracule is called a Wigner intracule, and is formally defined as
(11.43) |
If the orbitals are expanded in a basis set, then can be written as
(11.44) |
where ( is the Wigner integral
(11.45) |
Wigner integrals are similar to momentum integrals and only have four-fold permutational symmetry. Evaluating Wigner integrals is considerably more difficult that their position or momentum counterparts. The fundamental integral,
(11.46) | |||||
can be expressed as
(11.47) |
or alternatively
(11.48) |
Two approaches for evaluating have been implemented in Q-Chem, full details can be found in Ref. 996. The first approach uses the first form of and used Lebedev quadrature to perform the remaining integrations over . For high accuracy large Lebedev grids542, 543, 540 should be used, grids of up to 5294 points are available in Q-Chem. Alternatively, the second form can be adopted and the integrals evaluated by summation of a series. Currently, both methods have been implemented within Q-Chem for and basis functions only.
When computing intracules it is most efficient to locate the loop over and/or points within the loop over shell-quartets.177 However, for this requires a large amount of memory to store all the integrals arising from each point. Consequently, an additional scheme, in which the and points loop is outside the shell-quartet loop, is available. This scheme is less efficient, but substantially reduces the memory requirements.