Q-Chem 4.3 User’s Manual

8.6 Pseudopotentials, Forces and Vibrational Frequencies

It is important to be able to optimize geometries using pseudopotentials and for this purpose Q-Chem contains analytical first derivatives of the nuclear potential energy term for pseudopotentials. However, as documented in Section 8.6.2, these capabilities are more limited than those for undifferentiated matrix elements. To avoid this limitation, Q-Chem will switch seamlessly to numerical derivatives of the ECP matrix elements when needed, which are combined with analytical evaluation of the remainder of the force contributions (where available, as documented in Table 9.1.

The pseudopotential package is also integrated with the vibrational analysis package and it is therefore possible to compute the vibrational frequencies (and hence the infrared and Raman spectra) of systems in which some of the atoms may bear pseudopotentials.

Q-Chem cannot calculate analytic second derivatives of the nuclear potential-energy term when ECP’s are used, and must therefore resort to finite difference methods. However, for HF and DFT calculations, it can compute analytic second derivatives for all other terms in the Hamiltonian. The program takes full advantage of this by only computing the potential-energy derivatives numerically, and adding these to the analytically calculated second derivatives of the remaining energy terms.

There is a significant speed advantage associated with this approach as, at each finite-difference step, only the potential-energy term needs to be calculated. This term requires only three-center integrals, which are far fewer in number and much cheaper to evaluate than the four-center, two-electron integrals associated with the electron-electron interaction terms. Readers are referred to Table 9.1 for a full list of the analytic derivative capabilities of Q-Chem.

8.6.1 Example

Example 8.187  Structure and vibrational frequencies of TeO$_{2}$ using Hartree-Fock theory and the Stuttgart relativistic large-core ECPs. Note that the vibrational frequency job reads both the optimized structure and the molecular orbitals from the geometry optimization job that precedes it. Note also that only the second derivatives of the potential energy term will be calculated by finite difference, all other terms will be calculated analytically.

$molecule
   0  1
   Te
   O1  Te  r
   O2  Te  r  O1  a

   r = 1.8
   a = 108
$end

$rem
   JOBTYP     opt
   METHOD     hf
   ECP        srlc
$end

@@@

$molecule
   read
$end

$rem
   JOBTYP      freq
   METHOD      hf
   ECP         srlc
   SCF_GUESS   read
$end

8.6.2 A Brief Guide to Q-Chem’s Built-In ECPs

The remainder of this Chapter consists of a brief reference guide to Q-Chem’s built-in ECPs. The ECPs vary in their complexity and their accuracy and the purpose of the guide is to enable the user quickly and easily to decide which ECP to use in a planned calculation.

The following information is provided for each ECP:

Finally, we note the limitations of the current ECP implementation within Q-Chem:


8.6.3 The HWMB Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(14.92,4)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(-0.08,3)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(3.92,0)(0.25,0){56}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){8}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put( 0, 8){\line(1,0){2}} \put( 0, 7){\line(1,0){2}} \put(12, 8){\line(1,0){6}} \put(11, 4){\line(0,1){3}} \put(12, 4){\line(0,1){3}} \put( 0, 4){\line(1,0){3}} \put(15, 5){\line(1,0){3}} \put(15, 4){\line(0,1){1}} \put(15, 4){\line(0,1){1}} 

\put( 0.8,8.4){a} \put(14.8,8.4){a} \put( 0.8,7.4){b} \put( 5.3,5.4){c} \put(11.3,5.4){d} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}
HWMB is not available for shaded elements

(a)

No pseudopotential; Pople STO-3G basis used

(b)

Wadt & Hay, J. Chem. Phys. 82 (1985) 285

(c)

Hay & Wadt, J. Chem. Phys. 82 (1985) 299

(d)

Hay & Wadt, J. Chem. Phys. 82 (1985) 270

Element

Core

Max Projector

Valence

H–He

none

none

(1s)

Li–Ne

none

none

(2s,1p)

Na–Ar

[Ne]

$P$

(1s,1p)

K–Ca

[Ne]

$P$

(2s,1p)

Sc–Cu

[Ne]

$P$

(2s,1p,1d)

Zn

[Ar]

$D$

(1s,1p,1d)

Ga–Kr

[Ar]+3d

$D$

(1s,1p)

Rb–Sr

[Ar]+3d

$D$

(2s,1p)

Y–Ag

[Ar]+3d

$D$

(2s,1p,1d)

Cd

[Kr]

$D$

(1s,1p,1d)

In–Xe

[Kr]+4d

$D$

(1s,1p)

Cs–Ba

[Kr]+4d

$D$

(2s,1p)

La

[Kr]+4d

$D$

(2s,1p,1d)

Hf–Au

[Kr]+4d+4f

$F$

(2s,1p,1d)

Hg

[Xe]+4f

$F$

(1s,1p,1d)

Tl–Bi

[Xe]+4f+5d

$F$

(1s,1p)

8.6.4 The LANL2DZ Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(14.92,4)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(-0.08,3)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(3.92,1)(0.25,0){56}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(3.92,0)(0.25,0){8}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(8.92,0)(0.25,0){36}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put( 0, 8){\line(1,0){2}} \put( 0, 7){\line(1,0){2}} \put(12, 8){\line(1,0){6}} \put(11, 4){\line(0,1){3}} \put(12, 4){\line(0,1){3}} \put( 0, 4){\line(1,0){3}} \put(15, 5){\line(1,0){3}} \put(15, 4){\line(0,1){1}} \put(15, 4){\line(0,1){1}} \put( 6, 0){\line(0,1){1}} \put( 7, 0){\line(0,1){1}} \put( 9, 0){\line(0,1){1}} \put( 6, 1){\line(1,0){3}} 

\put( 0.8,8.4){a} \put(14.8,8.4){a} \put( 0.8,7.4){b} \put( 5.3,5.4){c} \put(11.3,5.4){d} \put( 6.3,0.4){e} \put( 7.8,0.4){f} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}

LANL2DZ is not available for shaded elements

(a)

No pseudopotential; Pople 6-31G basis used

(b)

Wadt & Hay, J. Chem. Phys. 82 (1985) 285

(c)

Hay & Wadt, J. Chem. Phys. 82 (1985) 299

(d)

Hay & Wadt, J. Chem. Phys. 82 (1985) 270

(e)

Hay, J. Chem. Phys. 79 (1983) 5469

(f)

Wadt, to be published

Element

Core

Max Projector

Valence

H–He

none

none

(2s)

Li–Ne

none

none

(3s,2p)

Na–Ar

[Ne]

$P$

(2s,2p)

K–Ca

[Ne]

$P$

(3s,3p)

Sc–Cu

[Ne]

$P$

(3s,3p,2d)

Zn

[Ar]

$D$

(2s,2p,2d)

Ga–Kr

[Ar]+3d

$D$

(2s,2p)

Rb–Sr

[Ar]+3d

$D$

(3s,3p)

Y–Ag

[Ar]+3d

$D$

(3s,3p,2d)

Cd

[Kr]

$D$

(2s,2p,2d)

In–Xe

[Kr]+4d

$D$

(2s,2p)

Cs–Ba

[Kr]+4d

$D$

(3s,3p)

La

[Kr]+4d

$D$

(3s,3p,2d)

Hf–Au

[Kr]+4d+4f

$F$

(3s,3p,2d)

Hg

[Xe]+4f

$F$

(2s,2p,2d)

Tl

[Xe]+4f+5d

$F$

(2s,2p,2d)

Pb–Bi

[Xe]+4f+5d

$F$

(2s,2p)

U–Pu

[Xe]+4f+5d

$F$

(3s,3p,2d,2f)

Note that Q-Chem 4.2.2 and later versions also support LANL2DZ-SV basis, which employs SV basis functions (instead of 6-31G) on H, Li-He elements (like some other quantum chemistry packages).

8.6.5 The SBKJC Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(3.92,0)(0.25,0){56}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(-0.08,3)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put( 0, 9){\line(1,0){1}} \put(17, 9){\line(1,0){1}} \put( 0, 7){\line(1,0){2}} \put(12, 7){\line(1,0){6}} \put( 0, 4){\line(1,0){3}} \put( 4, 1){\line(1,0){14}} 

\put( 0.3,9.4){a} \put(17.3,9.4){a} \put(14.8,7.8){b} \put( 0.8,7.8){b} \put( 8.8,5.4){c} \put(10.8,1.4){d} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}
SBKJC is not available for shaded elements

(a)

No pseudopotential; Pople 3-21G basis used

(b)

W.J. Stevens, H. Basch & M. Krauss, J. Chem. Phys. 81 (1984) 6026

(c)

W.J. Stevens, M. Krauss, H. Basch & P.G. Jasien, Can. J. Chem 70 (1992) 612

(d)

T.R. Cundari & W.J. Stevens, J. Chem. Phys. 98 (1993) 5555

Element

Core

Max Projector

Valence

H–He

none

none

(2s)

Li–Ne

[He]

$S$

(2s,2p)

Na–Ar

[Ne]

$P$

(2s,2p)

K–Ca

[Ar]

$P$

(2s,2p)

Sc–Ga

[Ne]

$P$

(4s,4p,3d)

Ge–Kr

[Ar]+3d

$D$

(2s,2p)

Rb–Sr

[Kr]

$D$

(2s,2p)

Y–In

[Ar]+3d

$D$

(4s,4p,3d)

Sn–Xe

[Kr]+4d

$D$

(2s,2p)

Cs–Ba

[Xe]

$D$

(2s,2p)

La

[Kr]+4d

$F$

(4s,4p,3d)

Ce–Lu

[Kr]+4d

$D$

(4s,4p,1d,1f)

Hf–Tl

[Kr]+4d+4f

$F$

(4s,4p,3d)

Pb–Rn

[Xe]+4f+5d

$F$

(2s,2p)

8.6.6 The CRENBS Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(3.92,0)(0.25,0){56}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){8}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(-0.08,3)(0.25,0){8}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){12}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(1.92,3)(0.25,0){4}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put(12, 7){\line(1,0){6}} \put( 0, 6){\line(1,0){2}} \put( 2, 6){\line(1,0){16}} \put( 2, 5){\line(1,0){16}} \put( 2, 4){\line(1,0){1}} \put( 2, 4){\line(0,1){3}} 

\put(14.8,7.8){a} \put( 0.8,7.3){a} \put( 9.8,6.4){b} \put( 9.8,5.4){c} \put( 9.8,4.4){d} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}

CRENBS is not available for shaded elements

(a)

No pseudopotential; Pople STO-3G basis used

(b)

Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840

(c)

LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812

(d)

Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 6654

Element

Core

Max Projector

Valence

H–He

none

none

(1s)

Li–Ne

none

none

(2s,1p)

Na–Ar

none

none

(3s,2p)

K–Ca

none

none

(4s,3p)

Sc–Zn

[Ar]

$P$

(1s,0p,1d)

Ga–Kr

[Ar]+3d

$D$

(1s,1p)

Y–Cd

[Kr]

$D$

(1s,1p,1d)

In–Xe

[Kr]+4d

$D$

(1s,1p)

La

[Xe]

$D$

(1s,1p,1d)

Hf–Hg

[Xe]+4f

$F$

(1s,1p,1d)

Tl–Rn

[Xe]+4f+5d

$F$

(1s,1p)

8.6.7 The CRENBL Pseudopotential at a Glance

\begin{picture}(18,10)

\thinlines \put( 0, 9){\line(1,0){1}} \put(17, 9){\line(1,0){1}} \put( 0, 7){\line(1,0){2}} \put(12, 7){\line(1,0){6}} \put( 0, 6){\line(1,0){18}} \put( 0, 5){\line(1,0){18}} \put( 0, 4){\line(1,0){3}} \put( 4, 1){\line(1,0){14}} \put( 9, 0){\line(0,1){1}} 

\put( 0.3,9.4){a} \put(17.3,9.4){a} \put(14.8,7.8){b} \put( 0.8,7.8){b} \put( 8.8,6.4){c} \put( 8.8,5.4){d} \put( 8.8,4.4){e} \put( 6.8,0.4){f} \put(13.3,0.4){h} \put(10.8,1.4){g} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}

(a)

No pseudopotential; Pople 6-311G* basis used

(b)

Pacios & Christiansen, J. Chem. Phys. 82 (1985) 2664

(c)

Hurley, Pacios, Christiansen, Ross & Ermler, J. Chem. Phys. 84 (1986) 6840

(d)

LaJohn, Christiansen, Ross, Atashroo & Ermler, J. Chem. Phys. 87 (1987) 2812

(e)

Ross, Powers, Atashroo, Ermler, LaJohn & Christiansen, J. Chem. Phys. 93 (1990) 6654

(f)

Ermler, Ross & Christiansen, Int. J. Quantum Chem. 40 (1991) 829

(g)

Ross, Gayen & Ermler, J. Chem. Phys. 100 (1994) 8145

(h)

Nash, Bursten & Ermler, J. Chem. Phys. 106 (1997) 5133

Element

Core

Max Projector

Valence

H–He

none

none

(3s)

Li–Ne

[He]

S

(4s,4p)

Na–Mg

[He]

S

(6s,4p)

Al–Ar

[Ne]

P

(4s,4p)

K–Ca

[Ne]

P

(5s,4p)

Sc–Zn

[Ne]

P

(7s,6p,6d)

Ga–Kr

[Ar]

P

(3s,3p,4d)

Rb–Sr

[Ar]+3d

D

(5s,5p)

Y–Cd

[Ar]+3d

D

(5s,5p,4d)

In–Xe

[Kr]

D

(3s,3p,4d)

Cs–La

[Kr]+4d

D

(5s,5p,4d)

Ce–Lu

[Xe]

D

(6s,6p,6d,6f)

Hf–Hg

[Kr]+4d+4f

F

(5s,5p,4d)

Tl–Rn

[Xe]+4f

F

(3s,3p,4d)

Fr–Ra

[Xe]+4f+5d

F

(5s,5p,4d)

Ac–Pu

[Xe]+4f+5d

F

(5s,5p,4d,4f)

Am–Lr

[Xe]+4f+5d

F

(0s,2p,6d,5f)

8.6.8 The SRLC Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(-0.08,3)(0.25,0){8}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(1.92,4)(0.25,0){36}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){12}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(10.92,5)(0.25,0){4}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(2.92,1)(0.25,0){60}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put( 0, 9){\line(1,0){1}} \put(17, 9){\line(1,0){1}} \put(11, 5){\line(1,0){7}} \put(11, 4){\line(0,1){1}} \put(11, 6){\line(0,1){1}} \put(11, 6){\line(1,0){1}} \put(12, 5){\line(0,1){2}} \put(17, 5){\line(0,1){4}} \put(2, 4){\line(0,1){3}} \put(1, 4){\line(0,1){5}} \put(0, 4){\line(1,0){2}} \put(0, 5){\line(1,0){1}} \put(0, 6){\line(1,0){1}} \put(3, 1){\line(1,0){15}} 

\put( 0.3,9.4){a} \put(17.3,9.4){a} \put( 0.3,7.3){b} \put( 1.3,6.3){c} \put(14.3,6.8){d} \put(17.3,6.8){e} \put(11.3,6.4){f} \put( 0.3,5.3){g} \put( 0.3,4.3){h} \put(14.3,4.3){i} \put(10.3,0.4){j} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){2}} \put( 2, 3){\line(0,1){1}} \put( 2, 4){\line(1,0){16}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 3, 0){\line(1,0){15}} \put( 3, 2){\line(1,0){15}} \put( 3, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}
SRLC is not available for shaded elements

(a)

No pseudopotential; Pople 6-31G basis used

(b)

Fuentealba, Preuss, Stoll & Szentpaly, Chem. Phys. Lett. 89 (1982) 418

(c)

Fuentealba, Szentpály, Preuss & Stoll, J. Phys. B 18 (1985) 1287

(d)

Bergner, Dolg, Küchle, Stoll & Preuss, Mol. Phys. 80 (1993) 1431

(e)

Nicklass, Dolg, Stoll & Preuss, J. Chem. Phys. 102 (1995) 8942

(f)

Schautz, Flad & Dolg, Theor. Chem. Acc. 99 (1998) 231

(g)

Fuentealba, Stoll, Szentpaly, Schwerdtfeger & Preuss, J. Phys. B 16 (1983) L323

(h)

Szentpaly, Fuentealba, Preuss & Stoll, Chem. Phys. Lett. 93 (1982) 555

(i)

Küchle, Dolg, Stoll & Preuss, Mol. Phys. 74 (1991) 1245

(j)

Küchle, to be published


Element

Core

Max Projector

Valence

H–He

none

none

(2s)

Li–Be

[He]

$P$

(2s,2p)

B–N

[He]

$D$

(2s,2p)

O–F

[He]

$D$

(2s,3p)

Ne

[He]

$D$

(4s,4p,3d,1f)

Na–P

[Ne]

$D$

(2s,2p)

S–Cl

[Ne]

$D$

(2s,3p)

Ar

[Ne]

$F$

(4s,4p,3d,1f)

K–Ca

[Ar]

$D$

(2s,2p)

Zn

[Ar]+3d

$D$

(3s,2p)

Ga–As

[Ar]+3d

$F$

(2s,2p)

Se–Br

[Ar]+3d

$F$

(2s,3p)

Kr

[Ar]+3d

$G$

(4s,4p,3d,1f)

Rb–Sr

[Kr]

$D$

(2s,2p)

In–Sb

[Kr]+4d

$F$

(2s,2p)

Te–I

[Kr]+4d

$F$

(2s,3p)

Xe

[Kr]+4d

$G$

(4s,4p,3d,1f)

Cs–Ba

[Xe]

$D$

(2s,2p)

Hg–Bi

[Xe]+4f+5d

$G$

(2s,2p,1d)

Po–At

[Xe]+4f+5d

$G$

(2s,3p,1d)

Rn

[Xe]+4f+5d

$G$

(2s,2p,1d)

Ac–Lr

[Xe]+4f+5d

$G$

(5s,5p,4d,3f,2g)

8.6.9 The SRSC Pseudopotential at a Glance

\begin{picture}(18,10)\multiput(-0.08,3)(0.25,0){12}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(1.92,4)(0.25,0){4}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(11.92,4)(0.25,0){24}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){12}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } \multiput(16.92,1)(0.25,0){4}{\begin{picture}(0,0)\multiput(0,0)(0,0.25){4}{\textcolor{Grey}{\small {$\times $}}}\end{picture} } 

\thinlines \put( 0, 7){\line(1,0){2}} \put(12, 7){\line(1,0){6}} \put( 2, 6){\line(1,0){10}} \put( 4, 1){\line(1,0){14}} \put( 1, 4){\line(0,1){3}} \put( 2, 4){\line(0,1){3}} \put( 3, 4){\line(0,1){1}} \put( 2, 5){\line(1,0){1}} \put( 0, 4){\line(1,0){2}} \put(17, 1){\line(0,1){1}} \put(12, 4){\line(0,1){3}} 

\put(14.8,7.8){a} \put( 0.8,7.8){a} \put( 0.4,5.4){b} \put( 1.3,5.4){c} \put( 6.8,6.4){d} \put( 6.8,4.8){e} 

\put(10.8,1.4){f} \put(10.8,0.4){g} 

\thicklines \put( 0, 3){\line(0,1){7}} \put( 0, 3){\line(1,0){3}} \put( 3, 3){\line(0,1){1}} \put( 3, 4){\line(1,0){15}} \put(18, 4){\line(0,1){6}} \put(17,10){\line(1,0){1}} \put(17, 9){\line(0,1){1}} \put(12, 9){\line(1,0){5}} \put(12, 7){\line(0,1){2}} \put( 2, 7){\line(1,0){10}} \put( 2, 7){\line(0,1){2}} \put( 1, 9){\line(1,0){1}} \put( 1, 9){\line(0,1){1}} \put( 0,10){\line(1,0){1}} \put( 4, 0){\line(1,0){14}} \put( 4, 2){\line(1,0){14}} \put( 4, 0){\line(0,1){2}} \put(18, 0){\line(0,1){2}} \end{picture}

SRSC is not available for shaded elements

(a)

No pseudopotential; Pople 6-311G* basis used

(b)

Leininger, Nicklass, Küchle, Stoll, Dolg & Bergner, Chem. Phys. Lett. 255 (1996) 274

(c)

Kaupp, Schleyer, Stoll & Preuss, J. Chem. Phys. 94 (1991) 1360

(d)

Dolg, Wedig, Stoll & Preuss, J. Chem. Phys. 86 (1987) 866

(e)

Andrae, Haeussermann, Dolg, Stoll & Preuss, Theor. Chim. Acta 77 (1990) 123

(f)

Dolg, Stoll & Preuss, J. Chem. Phys. 90 (1989) 1730

(g)

Küchle, Dolg, Stoll & Preuss, J. Chem. Phys. 100 (1994) 7535

Element

Core

Max Projector

Valence

H–Ar

none

none

(3s)

Li–Ne

none

none

(4s,3p,1d)

Na–Ar

none

none

(6s,5p,1d)

K

[Ne]

$F$

(5s,4p)

Ca

[Ne]

$F$

(4s,4p,2d)

Sc–Zn

[Ne]

$D$

(6s,5p,3d)

Rb

[Ar]+3d

$F$

(5s,4p)

Sr

[Ar]+3d

$F$

(4s,4p,2d)

Y–Cd

[Ar]+3d

$F$

(6s,5p,3d)

Cs

[Kr]+4d

$F$

(5s,4p)

Ba

[Kr]+4d

$F$

(3s,3p,2d,1f)

Ce–Yb

[Ar]+3d

$G$

(5s,5p,4d,3f)

Hf–Pt

[Kr]+4d+4f

$G$

(6s,5p,3d)

Au

[Kr]+4d+4f

$F$

(7s,3p,4d)

Hg

[Kr]+4d+4f

$G$

(6s,6p,4d)

Ac–Lr

[Kr]+4d+4f

$G$

(8s,7p,6d,4f)