7.3 Time-Dependent Density Functional Theory (TDDFT)

7.3.7 Various TDDFT-Based Examples

Example 7.10  This example shows two jobs which request variants of time-dependent density functional theory calculations. The first job, using the default value of RPA = FALSE, performs TDDFT in the Tamm-Dancoff approximation (TDA). The second job, with RPA = TRUE performs a both TDA and full TDDFT calculations.

$comment
   methyl peroxy radical
   TDDFT/TDA and full TDDFT with 6-31+G*
$end

$molecule
   0  2
   C  1.00412  -0.18045    0.00000
   O -0.24600   0.59615    0.00000
   O -1.31237  -0.23026    0.00000
   H  1.81077   0.56720    0.00000
   H  1.03665  -0.80545   -0.90480
   H  1.03665  -0.80545    0.90480
$end

$rem
   EXCHANGE          b
   CORRELATION       lyp
   CIS_N_ROOTS       5
   BASIS             6-31+G*
   SCF_CONVERGENCE   7
$end

@@@

$molecule
   read
$end

$rem
   EXCHANGE          b
   CORRELATION       lyp
   CIS_N_ROOTS       5
   CIS_MAX_CYCLES    40
   RPA               true
   BASIS             6-31+G*
   SCF_CONVERGENCE   7
$end

Example 7.11  This example shows a calculation of the excited states of a formamide-water complex within a reduced excitation space of the orbitals located on formamide

$comment
   formamide-water TDDFT/TDA in reduced excitation space
$end

$molecule
   0 1
   H  1.13  0.49 -0.75
   C  0.31  0.50 -0.03
   N -0.28 -0.71  0.08
   H -1.09 -0.75  0.67
   H  0.23 -1.62 -0.22
   O -0.21  1.51  0.47
   O -2.69  1.94 -0.59
   H -2.59  2.08 -1.53
   H -1.83  1.63 -0.30
$end

$rem
   EXCHANGE          b3lyp
   CIS_N_ROOTS       10
   BASIS             6-31++G**
   TRNSS             TRUE
   TRTYPE            1
   CUTOCC            60
   CUTVIR            40
   CISTR_PRINT       TRUE
   N_SOL             6
$end

$solute
1
2
3
4
5
6
$end

Example 7.12  This example shows a calculation of the core-excited states at the oxygen K-edge of CO with a short-range corrected functional.

$comment
   TDDFT with short-range corrected (SRC1) functional for the
   oxygen K-edge of CO
$end

$molecule
   0 1
   C     0.000000    0.000000   -0.648906
   O     0.000000    0.000000    0.486357
$end

$rem
   EXCHANGE       SRC1-R1
   BASIS          6-311(2+,2+)G**
   CIS_N_ROOTS    6
   CIS_TRIPLETS   false
   TRNSS          true
   TRTYPE         3
   N_SOL          1
$end

$solute
   1
$end

Example 7.13  This example shows a calculation of the core-excited states at the phosphorus K-edge with a short-range corrected functional.

$comment
   TDDFT with short-range corrected (SRC2) functional for the
   phosphorus K-edge of PH3
$end

$molecule
   0 1
   H     1.196206    0.000000   -0.469131
   P     0.000000    0.000000    0.303157
   H    -0.598103   -1.035945   -0.469131
   H    -0.598103    1.035945   -0.469131
$end

$rem
   EXCHANGE       SRC2-R2
   BASIS          6-311(2+,2+)G**
   CIS_N_ROOTS    6
   CIS_TRIPLETS   false
   TRNSS          true
   TRTYPE         3
   N_SOL          1
$end

$solute
   1
$end

Example 7.14  SF-TDDFT SP calculation of the 6 lowest states of the TMM diradical using recommended 50-50 functional

$molecule
   0 3
   C
   C  1  CC1
   C  1  CC2   2  A2
   C  1  CC2   2  A2     3  180.0
   H  2  C2H   1  C2CH   3    0.0
   H  2  C2H   1  C2CH   4    0.0
   H  3  C3Hu  1  C3CHu  2    0.0
   H  3  C3Hd  1  C3CHd  4    0.0
   H  4  C3Hu  1  C3CHu  2    0.0
   H  4  C3Hd  1  C3CHd  3    0.0

   CC1    = 1.35
   CC2    = 1.47
   C2H    = 1.083
   C3Hu   = 1.08
   C3Hd   = 1.08
   C2CH   = 121.2
   C3CHu  = 120.3
   C3CHd  = 121.3
   A2    = 121.0
$end

$rem
   EXCHANGE          gen
   BASIS             6-31G*
   SCF_GUESS         core
   SCF_CONVERGENCE   10
   MAX_SCF_CYCLES    100
   SPIN_FLIP         1
   CIS_N_ROOTS       6
   CIS_CONVERGENCE   10
   MAX_CIS_CYCLES    100
$end

$xc_functional
   X  HF    0.50
   X  S     0.08
   X  B     0.42
   C  VWN   0.19
   C  LYP   0.81
$end

Example 7.15  SF-DFT with non-collinear exchange-correlation functional for low-lying states of CH2

$comment
  Non-collinear SF-DFT calculation for CH2 at 3B1 state geometry from
  EOM-CCSD(fT) calculation
$end

$molecule
   0 3
   C
   H  1 rCH
   H  1 rCH  2 HCH

   rCH = 1.0775
   HCH = 133.29
$end

$rem
   EXCHANGE             PBE0
   BASIS                cc-pVTZ
   SPIN_FLIP            1
   WANG_ZIEGLER_KERNEL  TRUE
   SCF_CONVERGENCE      10
   CIS_N_ROOTS          6
   CIS_CONVERGENCE      10
$end

Example 7.16  SF-DFT calculation with collinear B5050LYP for para-benzyne with wave-function analaysis (natural orbitlas and NTOs) performed by libwfa

$comment
Para-benzyne diradical
Equilibrium singlet state geom from J. Chem. Phys. 136, 204103 (2012); Enu = 187.2138176166 hartree
$end

$molecule
0 3
H  2.145810 -1.225292 0.000000
C  1.201382 -0.709285 0.000000
C  1.201382  0.709285 0.000000
H  2.145810  1.225292 0.000000
C  0.000000  1.335664 0.000000
C -1.201382  0.709285 0.000000
H -2.145810  1.225291 0.000000
C -1.201382 -0.709285 0.000000
H -2.145810 -1.225291 0.000000
C  0.000000 -1.335664 0.000000
$end

$rem
job_type = sp
method = b5050lyp
basis = 6-31G*
cis_n_roots = 4
spin_flip = true
new_dft = true
state_analysis = true
wfa_ref_state = 1
molden_format = true
nto_pairs = 4
$end