Example 13.8 Input for the NEO-HF calculation on HO molecule with the second proton treated quantum-mechanically. The electronic basis set is cc-pVDZ and the protonic is an uncontracted 2s2p2d basis set with exponents 4.0 and 8.0.
$molecule 0 1 H -3.5008791 1.2736107 0.7596000 O -3.9840791 1.3301107 -0.0574000 H -4.9109791 1.2967107 0.1521000 $end $rem input_bohr = false method = hf basis = cc-pvdz neo = true $end $neo_basis H 3 S 1 1.000000 4.0 1.0 S 1 1.000000 8.0 1.0 P 1 1.000000 4.0 1.0 P 1 1.000000 8.0 1.0 D 1 1.000000 4.0 1.0 D 1 1.000000 8.0 1.0 **** $end
Example 13.9 Input for the NEO-DFT-epc172 geometry optimization calculation of all centers on CHO molecule with both protons treated quantum-mechanically. The electronic exchange-correlation functional is PBE0. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points along with the DIIS algorithm.
$molecule 0 1 C 0.000000 0.000000 0.000000 O 0.000000 0.000000 1.220000 H 0.935307 0.0000000 -0.5400000 H -0.935307 0.000000 -0.540000 $end $rem JOBTYPE=OPT input_bohr = false method = pbe0 basis = sto-3g neo = true neo_epc = epc172 sym_ignore = 1 scf_convergence 11 max_scf_cycles 100 SCF_ALGORITHM diis xc_grid = 000099000302 $end $neo_basis H 3 S 1 1.000000 4.0 1.0 P 1 1.000000 4.0 1.0 **** H 4 S 1 1.000000 4.0 1.0 P 1 1.000000 4.0 1.0 **** $end
Example 13.10 Input for the NEO-DFT-epc19 geometry optimization calculation of the NEO center only on open-shell OH radical molecule with a proton treated quantum-mechanically. The electronic exchange-correlation functional is PBE0. The electronic basis set is 6-31G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 230 spherical quadrature points along with the DIIS algorithm.
$molecule 0 2 O -4.51141442087211e+00 1.26487797724338e+00 -0.00000000000000e+00 H -2.73932450304982e+00 1.86612287877458e+00 -0.00000000000000e+00 $end $rem JOBTYPE=OPT input_bohr = true method = pbe0 unrestricted = true basis = 6-31g neo = true sym_ignore = 1 scf_convergence 6 max_scf_cycles 100 SCF_ALGORITHM diis neo_epc = epc19 xc_grid = 000099000230 $end $OPT FIXED 1 XYZ ENDFIXED $END $neo_basis H 2 S 1 1.000000 4.0 1.0 P 1 1.000000 4.0 1.0 **** $end
Example 13.11 Input for the NEO-TDDFT-epc19 calculation on CHO molecule (both protons treated quantum-mechanically) of the first five roots obtained with the Davidson algorithm. The electronic exchange-correlation functional is PBE0. The electronic basis set is STO-3G and the protonic is an uncontracted 1s1p basis set with exponents 4.0. This calculation utilizes DFT grid with 99 radial and 302 spherical quadrature points.
$molecule 0 1 C 0.000000 0.000000 0.000000 O 0.000000 0.000000 1.220000 H 0.935307 0.0000000 -0.5400000 H -0.935307 0.000000 -0.540000 $end $rem method = pbe0 basis = sto-3g thresh = 14 xc_grid = 000099000302 s2thresh = 12 neo = true neo_epc = epc172 SET_ROOTS = 5 RPA = true SCF_CONVERGENCE = 12 NEO_E_CONV = 12 $end $neo_basis H 3 S 1 1.000000 4.0 1.0 P 1 1.000000 4.0 1.0 **** H 4 S 1 1.000000 4.0 1.0 P 1 1.000000 4.0 1.0 **** $end
Example 13.12 Input for the NEO-TDHF calculation on the FDF molecule treating quantum nuclei as deuterium and employing NO_VPP option. The electronic basis set is cc-pVDZ and the protonic is an uncontracted even-tempered 8s8p basis set.
$molecule -1 1 F 0.0 0.0 -1.1229874446 F 0.0 0.0 1.1229874446 H 0.0 0.0 0.0 $end $rem input_bohr = false method = hf neo = true basis = cc-pvdz SCF_ALGORITHM = GDM RPA = true CIS_N_ROOTS = 100 thresh = 14 s2thresh = 12 SCF_CONVERGENCE = 11 MAX_SCF_CYCLES = 300 NEO_VPP = 0 NEO_ISOTOPE = 2 NEO_E_CONV = 11 $end $neo_basis H 3 S 1 1.000000 2.828400 1.0 S 1 1.000000 4.0 1.0 S 1 1.000000 5.6569 1.0 S 1 1.000000 8.0 1.0 S 1 1.000000 11.3137 1.0 S 1 1.000000 16.0 1.0 S 1 1.000000 22.6274 1.0 S 1 1.000000 32.0 1.0 P 1 1.000000 2.828400 1.0 P 1 1.000000 4.0 1.0 P 1 1.000000 5.6569 1.0 P 1 1.000000 8.0 1.0 P 1 1.000000 11.3137 1.0 P 1 1.000000 16.0 1.0 P 1 1.000000 22.6274 1.0 P 1 1.000000 32.0 1.0 **** $end