Q-Chem 5.0 User’s Manual

References and Further Reading

[1]

J. Kong et al., J. Comput. Chem. 21, 1532 (2000).

[2]

Y. Shao et al., Phys. Chem. Chem. Phys. 8, 3172 (2006).

[3]

Y. Shao et al., Mol. Phys. 113, 184 (2015).

[4]

A. I. Krylov and P. M. W. Gill, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3, 317 (2013).

[5]

Basis Sets (Chapter 7) and Effective Core Potentials (Chapter 8).

[6]

Molecular Geometry and Critical Points (Chapter 9).

[7]

Molecular Properties Analysis (Chapter 10).

[8]

AOINTS (Appendix B).

[9]

W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

[10]

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover, 1996.

[11]

F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 1994.

[12]

M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).

[13]

J. C. Slater, Phys. Rev. 34, 1293 (1929).

[14]

J. C. Slater, Phys. Rev. 35, 509 (1930).

[15]

J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

[16]

R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977).

[17]

T. Takada, M. Dupuis, and H. F. King, J. Chem. Phys. 75, 332 (1981).

[18]

M. Dupuis and H. F. King, Int. J. Quantum Chem. 11, 613 (1977).

[19]

M. Dupuis and H. F. King, J. Chem. Phys. 68, 3998 (1978).

[20]

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[21]

W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).

[22]

B. B. Laird, R. B. Ross, and T. Ziegler, editors, volume 629 of ACS Symposium Series, American Chemical Society, Washington, D.C., 1996.

[23]

T. Ziegler, Chem. Rev. 91, 651 (1991).

[24]

P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

[25]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

[26]

P. A. M. Dirac, P. Camb. Philos. Soc. 26, 376 (1930).

[27]

J. A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett. 199, 557 (1992).

[28]

S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[29]

J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).

[30]

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[31]

A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[32]

P. J. Stephens, F. J. Devlin, C. F. Chabolowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).

[33]

J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005).

[34]

O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009).

[35]

O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).

[36]

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

[37]

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 95, 109902 (2005).

[38]

R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87, 041108 (2013).

[39]

J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

[40]

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

[41]

S. Grimme, S. Ehrlich, and L. Goerigk, J. Chem. Theory Comput. 32, 1456 (2011).

[42]

H. Schröder, A. Creon, and T. Schwabe, J. Chem. Theory Comput. 11, 3163 (2015).

[43]

D. G. A. Smith, L. A. Burns, K. Patkowski, and C. D. Sherrill, J. Phys. Chem. Lett. 7, 2197 (2016).

[44]

K.-Y. Liu, J. Liu, and J. M. Herbert, Accuracy of finite-difference harmonic frequencies in density functional theory, (in press; DOI: 10.1002/jcc.24811), 2017.

[45]

P. M. W. Gill, R. D. Adamson, and J. A. Pople, Mol. Phys. 88, 1005 (1996).

[46]

A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[47]

Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).

[48]

R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013).

[49]

A. D. Becke, J. Chem. Phys. 84, 4524 (1986).

[50]

P. M. W. Gill, Mol. Phys. 89, 433 (1996).

[51]

A. D. Becke, J. Chem. Phys. 85, 7184 (1986).

[52]

C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

[53]

H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001).

[54]

J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).

[55]

N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001).

[56]

J. P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008).

[57]

J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).

[58]

J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).

[59]

B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).

[60]

E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).

[61]

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2006).

[62]

T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008).

[63]

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

[64]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009).

[65]

L. A. Constantin, E. Fabiano, and F. D. Sala, J. Chem. Theory Comput. 9, 2256 (2013).

[66]

J. P. Perdew, A. Ruzsinszky, J. Tao, G. I. Csonka, and G. E. Scuseria, Phys. Rev. A 76, 042506 (2007).

[67]

L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010).

[68]

P.-F. Loos, J. Chem. Phys. 146, 114108 (2017).

[69]

J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).

[70]

A. Ruzsinszky, J. Sun, B. Xiao, and G. Csonka, J. Chem. Theory Comput. 8, 2078 (2012).

[71]

J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

[72]

J. Tao and Y. Mo, Phys. Rev. Lett. 117, 073001 (2016).

[73]

J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[74]

S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

[75]

S. Liu and R. G. Parr, J. Mol. Struct. (Theochem) 501, 29 (2000).

[76]

E. Proynov and J. Kong, Phys. Rev. A 79, 014103 (2009).

[77]

J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[78]

E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).

[79]

P. A. Stewart and P. M. W. Gill, J. Chem. Soc. Faraday Trans. 91, 4337 (1995).

[80]

C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

[81]

J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

[82]

L. A. Constantin, E. Fabiano, and F. D. Sala, Phys. Rev. B 86, 035130 (2012).

[83]

A. D. Becke, J. Chem. Phys. 104, 1040 (1996).

[84]

E. Proynov and J. Kong, J. Chem. Theory Comput. 3, 746 (2007).

[85]

J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012).

[86]

T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999).

[87]

R. D. Adamson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 284, 6 (1998).

[88]

C. Y. Lin, M. W. George, and P. M. W. Gill, Aust. J. Chem. 57, 365 (2004).

[89]

H. S. Yu, W. Zhang, P. Verma, X. He, and D. G. Truhlar, Phys. Chem. Chem. Phys. 17, 12146 (2015).

[90]

F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998).

[91]

A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000).

[92]

A. D. Boese and N. C. Handy, J. Chem. Phys. 114, 5497 (2001).

[93]

P. Verma and D. G. Truhlar, J. Phys. Chem. Lett. 8, 380 (2017).

[94]

T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003).

[95]

T. W. Keal and D. J. Tozer, J. Chem. Phys. 121, 5654 (2004).

[96]

R. Peverati and D. G. Truhlar, J. Chem. Theory Comput. 8, 2310 (2012).

[97]

R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 1991 (2011).

[98]

N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 142, 074111 (2015).

[99]

N. Mardirossian et al., J. Phys. Chem. Lett. 8, 35 (2017).

[100]

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

[101]

R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117 (2012).

[102]

J. Wellendorff, K. T. Lundgaard, K. W. Jacobsen, and T. Bligaard, J. Chem. Phys. 140, 144107 (2014).

[103]

J. Sun, B. Xiao, and A. Ruzsinszky, J. Chem. Phys. 137, 051101 (2012).

[104]

J. Sun et al., J. Chem. Phys. 138, 044113 (2013).

[105]

J. Sun, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. USA 112, 685 (2015).

[106]

R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 13171 (2012).

[107]

H. S. Yu, X. He, and D. G. Truhlar, J. Chem. Theory Comput. 12, 1280 (2016).

[108]

A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002).

[109]

T. Van Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998).

[110]

C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

[111]

A. D. Becke, J. Chem. Phys. 107, 8554 (1997).

[112]

C. Adamo and V. Barone, Chem. Phys. Lett. 274, 242 (1997).

[113]

Y. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 118, 4807 (2003).

[114]

P. J. Wilson, T. J. Bradley, and D. J. Tozer, J. Chem. Phys. 115, 9233 (2001).

[115]

T. W. Keal and D. J. Tozer, J. Chem. Phys. 123, 121103 (2005).

[116]

A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004).

[117]

B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).

[118]

W.-M. Hoe, A. J. Cohen, and N. H. Handy, Chem. Phys. Lett. 341, 319 (2001).

[119]

S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen, J. Chem. Phys. 143, 054107 (2015).

[120]

Y. A. Bernard, Y. Shao, and A. I. Krylov, J. Chem. Phys. 136, 204103 (2012).

[121]

R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).

[122]

K. W. Wiitala, T. R. Hoye, and C. J. Cramer, J. Chem. Theory Comput. 2, 1085 (2006).

[123]

X. Xu and W. A. Goddard III, Proc. Natl. Acad. Sci. USA 101, 2673 (2004).

[124]

Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

[125]

Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2007).

[126]

V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).

[127]

G. I. Csonka, J. P. Perdew, and A. Ruzsinszky, J. Chem. Theory Comput. 6, 3688 (2010).

[128]

E. Proynov and J. Kong, in Theoretical Aspects of Catalysis, edited by G. Vaysilov and T. Mineva, Heron Press, Birmingham, UK, 2008.

[129]

Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 2715 (2004).

[130]

K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 103, 263201 (2009).

[131]

Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).

[132]

Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).

[133]

Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).

[134]

H. S. Yu, X. He, S. L. Li, and D. G. Truhlar, Chem. Sci. 7, 5032 (2016).

[135]

Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004).

[136]

Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).

[137]

K. Hui and J.-D. Chai, J. Chem. Phys. 144, 044114 (2016).

[138]

S. Grimme, J. Phys. Chem. A 109, 3067 (2005).

[139]

N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem. Phys. 16, 9904 (2014).

[140]

Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory Comput. 9, 263 (2013).

[141]

T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 393, 51 (2004).

[142]

P. Verma and R. J. Bartlett, J. Chem. Phys. 140, 18A534 (2014).

[143]

Y. Jin and R. J. Bartlett, J. Chem. Phys. 145, 034107 (2016).

[144]

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

[145]

E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009).

[146]

J. W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007).

[147]

M. A. Rohrdanz and J. M. Herbert, J. Chem. Phys. 129, 034107 (2008).

[148]

M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009).

[149]

R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012).

[150]

A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Phys. 126, 191109 (2007).

[151]

N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 144, 214110 (2016).

[152]

R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011).

[153]

Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai, J. Chem. Phys. 136, 154109 (2012).

[154]

S. Kozuch and J. M. L. Martin, J. Comput. Chem. 34, 2327 (2013).

[155]

J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 131, 174105 (2009).

[156]

Y. Zhang, X. Xu, and W. A. Goddard III, Proc. Natl. Acad. Sci. USA 106, 4963 (2009).

[157]

I. Y. Zhang, X. Xin, Y. Jung, and W. A. Goddard III, Proc. Natl. Acad. Sci. USA 108, 19896 (2011).

[158]

S. Grimme, J. Chem. Phys. 124, 034108 (2006).

[159]

A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2008).

[160]

J. Toulouse, K. Sharkas., E. Brémond, and C. Adamo, J. Chem. Phys. 135, 101102 (2011).

[161]

E. Brémond, J. C. Sancho-García, A. J. Pérez-Jiménez, and C. Adamo, J. Chem. Phys. 141, 031101 (2014).

[162]

J.-D. Chai and S.-P. Mao, Chem. Phys. Lett. 538, 121 (2012).

[163]

E. Brémond and C. Adamo, J. Chem. Phys. 135, 024106 (2011).

[164]

L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).

[165]

N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009).

[166]

A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).

[167]

A. D. Becke, Int. J. Quantum Chem. Symp. 28, 625 (1994).

[168]

A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).

[169]

E. Proynov, F. Liu, and J. Kong, Chem. Phys. Lett. 525, 150 (2012).

[170]

E. Proynov, Y. Shao, and J. Kong, Chem. Phys. Lett. 493, 381 (2010).

[171]

E. Proynov, F. Liu, Y. Shao, and J. Kong, J. Chem. Phys. 136, 034102 (2012).

[172]

J. P. Perdew, V. N. Staroverov, J. Tao, and G. E. Scuseria, Phys. Rev. A 78, 052513 (2008).

[173]

P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 124, 091102 (2006).

[174]

A. J. Cohen, P. Mori-Sánchez, and W. Yang, J. Chem. Phys. 127, 034101 (2007).

[175]

F. Liu, E. Proynov, J.-G. Yu, T. R. Furlani, and J. Kong, J. Chem. Phys. 137, 114104 (2012).

[176]

A. D. Becke, J. Chem. Phys. 88, 2547 (1988).

[177]

B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 220, 377 (1994).

[178]

C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phys. 78, 997 (1993).

[179]

S.-H. Chien and P. M. W. Gill, J. Comput. Chem. 24, 732 (2003).

[180]

M. Mitani, Theor. Chem. Acc. 130, 645 (2011).

[181]

M. Mitani and Y. Yoshioka, Theor. Chem. Acc. 131, 1169 (2012).

[182]

S. Dasgupta and J. M. Herbert, J. Comput. Chem. 38, 869 (2017).

[183]

V. I. Lebedev, Sibirsk. Mat. Zh. 18, 132 (1977).

[184]

V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fix. 15, 48 (1975).

[185]

V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fix. 16, 293 (1976).

[186]

V. I. Lebedev and D. N. Laikov, Dokl. Math. 366, 741 (1999).

[187]

P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys. Lett. 209, 506 (1993).

[188]

S.-H. Chien and P. M. W. Gill, J. Comput. Chem. 27, 730 (2006).

[189]

F. Castet and B. Champagne, J. Chem. Theory Comput. 8, 2044 (2012).

[190]

Y. Zhao and D. G. Truhlar, Chem. Phys. Lett. 502, 1 (2011).

[191]

S. E. Wheeler and K. N. Houk, J. Chem. Theory Comput. 6, 395 (2010).

[192]

A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).

[193]

C. Adamo, G. E. Scuseria, and V. Barone, J. Chem. Phys. 111, 2889 (1999).

[194]

A. Lange and J. M. Herbert, J. Chem. Theory Comput. 3, 1680 (2007).

[195]

A. W. Lange and J. M. Herbert, J. Am. Chem. Soc. 131, 124115 (2009).

[196]

A. W. Lange, M. A. Rohrdanz, and J. M. Herbert, J. Phys. Chem. B 112, 6304 (2008).

[197]

R. D. Adamson, J. P. Dombroski, and P. M. W. Gill, J. Comput. Chem. 20, 921 (1999).

[198]

R. M. Richard and J. M. Herbert, J. Chem. Theory Comput. 7, 1296 (2011).

[199]

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

[200]

F. Uhlig, J. M. Herbert, M. P. Coons, and P. Jungwirth, J. Phys. Chem. A 118, 7507 (2014).

[201]

A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).

[202]

P. Mori-Sánchez and A. J. Cohen, Phys. Chem. Chem. Phys. 16, 14378 (2014).

[203]

J. Autschbach and M. Srebro, Acc. Chem. Res. 47, 2592 (2014).

[204]

R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010).

[205]

S. J. A. van Gisbergen et al., J. Chem. Phys. 105, 3142 (1996).

[206]

Q. Wu, P. W. Ayers, and W. Yang, J. Chem. Phys. 119, 2978 (2003).

[207]

E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007).

[208]

U. Salzner and R. Baer, J. Chem. Phys. 131, 231101 (2009).

[209]

K. Garrett et al., J. Chem. Theory Comput. 10, 3821 (2014).

[210]

X. A. S. Vazquez and C. M. Isborn, J. Chem. Phys. 143, 244105 (2015).

[211]

M. P. Coons, Z. You, and J. M. Herbert, J. Am. Chem. Soc. 138, 10879 (2016).

[212]

M. B. Oviedo, N. V. Ilawe, and B. M. Wong, J. Chem. Theory Comput. 12, 3593 (2016).

[213]

M. Modrzejewski, L. Rajchel, G. Chalasinski, and M. M. Szczesniak, J. Phys. Chem. A 117, 11580 (2013).

[214]

M. Hapka, L. Rajchel, M. Modrzejewski, G. Chałasiǹski, and M. M. Szczȩśniak, J. Chem. Phys. 141, 134120:1 (2014).

[215]

K. U. Lao and J. M. Herbert, Implementation of restricted and unrestricted versions of extended symmetry-adapted perturbation theory (XSAPT) in the atomic orbital basis, and benchmark calculations for large supramolecular complexes, (in preparation).

[216]

O. A. Vydrov, Q. Wu, and T. Van Voorhis, J. Chem. Phys. 129, 014106 (2008).

[217]

K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).

[218]

O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 132, 164113 (2010).

[219]

J. Witte, N. Mardirossian, J. B. Neaton, and M. Head-Gordon, J. Chem. Theory Comput. 13, 2043 (2017).

[220]

E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).

[221]

J. Kong, Z. Gan, E. Proynov, M. Freindorf, and T. Furlani, Phys. Rev. A 79, 042510 (2009).

[222]

E. R. Johnson and A. D. Becke, J. Chem. Phys. 124, 174104 (2006).

[223]

A. D. Becke and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010).

[224]

F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010).

[225]

T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).

[226]

A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin, J. Phys. Chem. A 112, 3 (2008).

[227]

T. Benighaus, R. A. DiStasio, Jr., R. C. Lochan, J.-D. Chai, and M. Head-Gordon, J. Phys. Chem. A 112, 2702 (2008).

[228]

C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

[229]

J. Kim and Y. Jung, J. Chem. Theory Comput. 11, 45 (2015).

[230]

H. Ji, Y. Shao, W. A. Goddard, and Y. Jung, J. Chem. Theory Comput. 9, 1971 (2013).

[231]

R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).

[232]

M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).

[233]

M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).

[234]

S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).

[235]

M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).

[236]

C.-R. Pan, P.-T. Fang, and J.-D. Chai, Phys. Rev. A 87, 052510 (2013).

[237]

J.-D. Chai and P.-T. Chen, Phys. Rev. Lett. 110, 033002 (2013).

[238]

J.-D. Chai, J. Chem. Phys. 136, 154104 (2012).

[239]

J.-D. Chai, J. Chem. Phys. 140, 18A521 (2014).

[240]

M. Wolfsberg and L. Helmholtz, J. Chem. Phys. 20, 837 (1952).

[241]

P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

[242]

P. Pulay, J. Comput. Chem. 3, 556 (1982).

[243]

T. Van Voorhis and M. Head-Gordon, Mol. Phys. 100, 1713 (2002).

[244]

A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill, J. Phys. Chem. A 112, 13164 (2008).

[245]

E. Cancès and C. Le Bris, Int. J. Quantum Chem. 79, 82 (2000).

[246]

E. Cancès, J. Chem. Phys. 114, 10616 (2001).

[247]

K. N. Kudin, G. E. Scuseria, and E. Cancès, J. Chem. Phys. 116, 8255 (2002).

[248]

A. D. Rabuck and G. E. Scuseria, J. Chem. Phys. 110, 695 (1999).

[249]

X. Hu and W. Yang, J. Chem. Phys. 132, 054109 (2010).

[250]

L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).

[251]

E. R. Davidson, J. Chem. Phys. 17, 87 (1975).

[252]

S. M. Sharada, D. Stück, E. J. Sundstrom, A. T. Bell, and M. Head-Gordon, Mol. Phys. 113, 1802 (2015).

[253]

L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press, London, 1987.

[254]

C. A. White and M. Head-Gordon, J. Chem. Phys. 101, 6593 (1994).

[255]

C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 230, 8 (1994).

[256]

C. A. White and M. Head-Gordon, J. Chem. Phys. 105, 5061 (1996).

[257]

C. A. White and M. Head-Gordon, Chem. Phys. Lett. 257, 647 (1996).

[258]

C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 253, 268 (1996).

[259]

C. A. White and M. Head-Gordon, J. Chem. Phys. 104, 2620 (1996).

[260]

Y. Shao and M. Head-Gordon, Chem. Phys. Lett. 323, 425 (2000).

[261]

Y. Shao and M. Head-Gordon, J. Chem. Phys. 114, 6572 (2001).

[262]

T. R. Adams, R. D. Adamson, and P. M. W. Gill, J. Chem. Phys. 107, 124 (1997).

[263]

E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem. Phys. 106, 9708 (1997).

[264]

C. Ochsenfeld, C. A. White, and M. Head-Gordon, J. Chem. Phys. 109, 1663 (1998).

[265]

C. Ochsenfeld, Chem. Phys. Lett. 327, 216 (2000).

[266]

E. Schwegler and M. Challacombe, J. Chem. Phys. 106, 9708 (1996).

[267]

L. Fusti-Molnar and P. Pulay, J. Chem. Phys. 116, 7795 (2002).

[268]

L. Fusti-Molnar and P. Pulay, J. Chem. Phys. 117, 7827 (2002).

[269]

L. Fusti-Molnar, J. Chem. Phys. 119, 11080 (2003).

[270]

L. Fusti-Molnar and J. Kong, J. Chem. Phys. 122, 074108 (2005).

[271]

J. Kong, S. T. Brown, and L. Fusti-Molnar, J. Chem. Phys. 124, 094109 (2006).

[272]

N. J. Russ, C.-M. Chang, and J. Kong, Can. J. Chem. 89, 657 (2011).

[273]

C.-M. Chang, N. J. Russ, and J. Kong, Phys. Rev. A 84, 022504 (2011).

[274]

A. Sodt and M. Head-Gordon, J. Chem. Phys. 125, 074116 (2006).

[275]

A. Sodt and M. Head-Gordon, J. Chem. Phys. 128, 104106 (2008).

[276]

S. F. Manzer, E. Epifanovsky, and M. Head-Gordon, J. Chem. Theory Comput. 11, 518 (2015).

[277]

P. Merlot et al., J. Comput. Chem. 34, 1486 (2013).

[278]

F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).

[279]

R. D. Adamson, J. P. Dombroski, and P. M. W. Gill, Chem. Phys. Lett. 254, 329 (1996).

[280]

J. P. Dombroski, S. W. Taylor, and P. M. W. Gill, J. Phys. Chem. 100, 6272 (1996).

[281]

S. F. Manzer, P. R. Horn, N. Mardirossian, and M. Head-Gordon, J. Chem. Phys. 143, 024113 (2015).

[282]

W. Z. Liang and M. Head-Gordon, J. Phys. Chem. A 108, 3206 (2004).

[283]

R. P. Steele, R. A. DiStasio, Jr., Y. Shao, J. Kong, and M. Head-Gordon, J. Chem. Phys. 125, 074108 (2006).

[284]

R. P. Steele, Y. Shao, R. A. DiStasio, Jr., and M. Head-Gordon, J. Phys. Chem. A 110, 13915 (2006).

[285]

R. A. DiStasio, Jr., R. P. Steele, and M. Head-Gordon, Mol. Phys. 105, 27331 (2007).

[286]

R. P. Steele and M. Head-Gordon, Mol. Phys. 105, 2455 (2007).

[287]

R. P. Steele, R. A. DiStasio, Jr., and M. Head-Gordon, J. Chem. Theory Comput. 5, 1560 (2009).

[288]

L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).

[289]

L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).

[290]

L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000).

[291]

R. P. Steele, M. Head-Gordon, and J. C. Tully, J. Phys. Chem. A 114, 11853 (2010).

[292]

J. M. Herbert and M. Head-Gordon, J. Chem. Phys. 121, 11542 (2004).

[293]

R. P. Steele and J. C. Tully, Chem. Phys. Lett. 500, 167 (2010).

[294]

J. Deng, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 130, 231101 (2009).

[295]

J. Deng, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 133, 044116 (2009).

[296]

J. Deng, A. T. B. Gilbert, and P. M. W. Gill, Phys. Chem. Chem. Phys. 12, 10759 (2010).

[297]

T. Nakajima and K. Hirao, J. Chem. Phys. 124, 184108 (2006).

[298]

D. J. Tozer, M. E. Mura, R. D. Amos, and N. C. Handy, in Computational Chemistry, AIP Conference Proceedings, page 3, 1994.

[299]

Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 024502 (2005).

[300]

Q. Wu and T. Van Voorhis, J. Phys. Chem. A 110, 9212 (2006).

[301]

Q. Wu and T. Van Voorhis, J. Chem. Theory Comput. 2, 765 (2006).

[302]

Q. Wu and T. Van Voorhis, J. Chem. Phys. 125, 164105 (2006).

[303]

Q. Wu and T. Van Voorhis, J. Chem. Phys. 125, 164105 (2006).

[304]

Q. Wu, C. L. Cheng, and T. Van Voorhis, J. Chem. Phys. 127, 164119 (2007).

[305]

Q. Wu, B. Kaduk, and T. Van Voorhis, J. Chem. Phys. 130, 034109 (2009).

[306]

M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997).

[307]

M. S. Lee and M. Head-Gordon, Comp. Chem. 24, 295 (2000).

[308]

A. J. W. Thom and M. Head-Gordon, Phys. Rev. Lett. 101, 193001 (2008).

[309]

Self-Consistent Field Methods (Chapter 4).

[310]

Excited-State Calculations (Chapter 6).

[311]

For a tutorial introduction to electron correlation methods based on wavefunctions, see Ref. Bartlett:1994.

[312]

For a general textbook introduction to electron correlation methods and their respective strengths and weaknesses, see Ref. Jensen:1994.

[313]

D. Jayatilaka and T. J. Lee, Chem. Phys. Lett. 199, 211 (1992).

[314]

V. A. Rassolov, J. A. Pople, P. C. Redfern, and L. A. Curtiss, Chem. Phys. Lett. 350, 573 (2001).

[315]

T. Helgaker, J. Gauss, P. Jorgensen, and J. Olsen, J. Chem. Phys. 106, 6430 (1997).

[316]

M. Head-Gordon, Mol. Phys. 96, 673 (1999).

[317]

M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

[318]

M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).

[319]

M. S. Lee, P. E. Maslen, and M. Head-Gordon, J. Chem. Phys. 112, 3592 (2000).

[320]

M. Head-Gordon, M. S. Lee, and P. E. Maslen, in Simulation and Theory of Electrostatic Interactions in Solution, edited by L. R. Pratt and G. Hummer, volume 492 of AIP Conference Proceedings, page 301, American Institute of Physics, New York, 1999.

[321]

M. S. Lee and M. Head-Gordon, Int. J. Quantum Chem. 76, 169 (2000).

[322]

S. Saebo and P. Pulay, Annu. Rev. Phys. Chem. 44, 213 (1993).

[323]

M. S. Lee, PhD thesis, University of California, Berkeley, CA, 2000.

[324]

M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993).

[325]

B. I. Dunlap, Phys. Chem. Chem. Phys. 2, 2113 (2000).

[326]

Y. Jung, A. Sodt, P. M. W. Gill, and M. Head-Gordon, Proc. Natl. Acad. Sci. USA 102, 6692 (2005).

[327]

F. Weigend, M. Haser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998).

[328]

F. Weigend, A. Kohn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).

[329]

F. Weigend and M. Haser, Theor. Chem. Acc. 97, 331 (1997).

[330]

R. A. DiStasio, Jr., R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007).

[331]

S. Grimme, J. Chem. Phys. 118, 9095 (2003).

[332]

R. A. DiStasio, Jr. and M. Head-Gordon, Mol. Phys. 105, 1073 (2007).

[333]

Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121, 9793 (2004).

[334]

R. C. Lochan, Y. Shao, and M. Head-Gordon, J. Chem. Theory Comput. 3, 988 (2007).

[335]

R. C. Lochan, Y. Jung, and M. Head-Gordon, J. Phys. Chem. A 109, 7598 (2005).

[336]

R. C. Lochan and M. Head-Gordon, J. Chem. Phys. 126, 164101 (2007).

[337]

R. A. DiStasio, Jr., Y. Jung, and M. Head-Gordon, J. Chem. Theory Comput. 1, 862 (2005).

[338]

M. Goldey and M. Head-Gordon, J. Phys. Chem. Lett. 3, 3592 (2012).

[339]

M. Goldey, A. Dutoi, and M. Head-Gordon, Phys. Chem. Chem. Phys. 15, 15869 (2013).

[340]

G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

[341]

J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).

[342]

C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).

[343]

T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 113, 8873 (2000).

[344]

T. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 330, 585 (2000).

[345]

E. F. C. Byrd, T. Van Voorhis, and M. Head-Gordon, J. Phys. Chem. B 106, 8070 (2002).

[346]

E. Epifanovsky et al., J. Chem. Phys. 139, 134105 (2013).

[347]

F. Aquilante, T. B. Pedersen, and R. Lindh, Theor. Chem. Acc. 124, 1 (2009).

[348]

N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).

[349]

S. Wilson, Comput. Phys. Commun. 58, 71 (1990).

[350]

K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

[351]

T. J. Lee and G. E. Scuseria, in Quantum Mechanical Calculations with Chemical Accuracy, edited by S. R. Langhoff, page 47, Kluwer, Dordrecht, 1995.

[352]

S. R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000).

[353]

S. R. Gwaltney and M. Head-Gordon, J. Chem. Phys. 115, 5033 (2001).

[354]

S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998).

[355]

P. Piecuch and M. Włoch, J. Chem. Phys. 123, 224105 (2005).

[356]

B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).

[357]

K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 49 (1982).

[358]

A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 10669 (1998).

[359]

C. Sosa, J. Geertsen, G. W. Trucks, and R. J. Bartlett, Chem. Phys. Lett. 159, 148 (1989).

[360]

A. G. Taube and R. J. Bartlett, Collect. Czech. Chem. Commun. 70, 837 (2005).

[361]

A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 164101 (2008).

[362]

A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, J. Chem. Phys. 132, 014109 (2010).

[363]

G. J. O. Beran, S. R. Gwaltney, and M. Head-Gordon, Phys. Chem. Chem. Phys. 5, 2488 (2003).

[364]

E. Epifanovsky et al., J. Comput. Chem. 34, 2293 (2013).

[365]

E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, J. Parallel Dist. Comp. 74, 3176 (2014).

[366]

Y. Jung and M. Head-Gordon, ChemPhysChem 4, 522 (2003).

[367]

J. Cullen, Chem. Phys. 202, 217 (1996).

[368]

G. J. O. Beran, B. Austin, A. Sodt, and M. Head-Gordon, J. Phys. Chem. A 109, 9183 (2005).

[369]

T. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 317, 575 (2000).

[370]

T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 115, 7814 (2001).

[371]

W. A. Goddard III and L. B. Harding, Annu. Rev. Phys. Chem. 29, 363 (1978).

[372]

D. W. Small and M. Head-Gordon, J. Chem. Phys. 130, 084103 (2009).

[373]

D. W. Small and M. Head-Gordon, Phys. Chem. Chem. Phys. 13, 19285 (2011).

[374]

D. W. Small and M. Head-Gordon, J. Chem. Phys. 137, 114103 (2012).

[375]

K. V. Lawler, D. W. Small, and M. Head-Gordon, J. Phys. Chem. A 114, 2930 (2010).

[376]

G. J. O. Beran, M. Head-Gordon, and S. R. Gwaltney, J. Chem. Phys. 124, 114107 (2006).

[377]

T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 117, 9190 (2002).

[378]

A. Sodt, G. J. O. Beran, Y. Jung, B. Austin, and M. Head-Gordon, J. Chem. Theory Comput. 2, 300 (2006).

[379]

K. V. Lawler, J. A. Parkhill, and M. Head-Gordon, J. Chem. Phys. 130, 184113 (2009).

[380]

K. V. Lawler, G. J. O. Beran, and M. Head-Gordon, J. Chem. Phys. 128, 024107 (2008).

[381]

K. V. Lawler, J. A. Parkhill, and M. Head-Gordon, Mol. Phys. 106, 2309 (2008).

[382]

V. A. Rassolov, J. Chem. Phys. 117, 5978 (2002).

[383]

T. Arai, J. Chem. Phys. 33, 95 (1960).

[384]

A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc. Roy. Soc. London A 220, 446 (1953).

[385]

P. R. Surján, Topics Curr. Chem. 203, 63 (1999).

[386]

R. Seeger and J. A. Pople, J. Chem. Phys. 65, 265 (1976).

[387]

F. W. Bobrowicz and W. A. Goddard III, in Methods of Electronic Structure Theory, edited by H. F. Schaefer III, volume 3, page 79, Plenum, New York, 1977.

[388]

P. S. Epstein, Phys. Rev. 28, 695 (1926).

[389]

R. K. Nesbet, Proc. Roy. Soc. Ser. A 230, 312 (1955).

[390]

V. A. Rassolov, F. Xu, and S. Garaschchuk, J. Chem. Phys. 120, 10385 (2004).

[391]

R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, volume 5, chapter 2, page 65, Wiley-VCH, New York, 1994.

[392]

Ground-State Methods (Chapters 4 and 5).

[393]

A. Krylov, in Reviews in Computational Chemistry, edited by A. L. Parrill and K. B. Lipkowitz, chapter 4, John Wiley & Sons, Inc, 2017.

[394]

J. E. Del Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).

[395]

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).

[396]

D. Maurice and M. Head-Gordon, Int. J. Quantum Chem. 29, 361 (1995).

[397]

T. D. Bouman and A. E. Hansen, Int. J. Quantum Chem. Symp. 23, 381 (1989).

[398]

A. E. Hansen, B. Voight, and S. Rettrup, Int. J. Quantum Chem. 23, 595 (1983).

[399]

J. L. McHale, Prentice Hall, New York, 1999.

[400]

F. Cordova et al., J. Chem. Phys. 127, 164111 (2007).

[401]

D. Maurice and M. Head-Gordon, J. Phys. Chem. 100, 6131 (1996).

[402]

M. Head-Gordon, A. M. Graña, D. Maurice, and C. A. White, J. Phys. Chem. 99, 14261 (1995).

[403]

D. Casanova and M. Head-Gordon, J. Chem. Phys. 129, 064104 (2008).

[404]

A. I. Krylov, Chem. Phys. Lett. 350, 522 (2002).

[405]

J. F. Stanton, J. Gauss, N. Ishikawa, and M. Head-Gordon, J. Chem. Phys. 103, 4160 (1995).

[406]

S. Zilberg and Y. Haas, J. Chem. Phys. 103, 20 (1995).

[407]

C. M. Gittins, E. A. Rohlfing, and C. M. Rohlfing, J. Chem. Phys. 105, 7323 (1996).

[408]

D. Maurice and M. Head-Gordon, Mol. Phys. 96, 1533 (1999).

[409]

D. Maurice, Single Electron Theories of Excited States, PhD thesis, University of California, Berkeley, CA, 1998.

[410]

S. Matsika and P. Krause, Annu. Rev. Phys. Chem. 62, 621 (2011).

[411]

J. M. Herbert, X. Zhang, A. F. Morrison, and J. Liu, acr 49, 931 (2016).

[412]

S. Fatehi, E. Alguire, Y. Shao, and J. Subotnik, J. Chem. Phys. 135, 234105 (2011).

[413]

X. Zhang and J. M. Herbert, J. Chem. Phys. 141, 064104 (2014).

[414]

X. Zhang and J. M. Herbert, J. Chem. Phys. 142, 064109 (2015).

[415]

Q. Ou, G. D. Bellchambers, F. Furche, and J. E. Subotnik, J. Chem. Phys. 142, 064114 (2015).

[416]

A. J. W. Thom, E. J. Sundstrom, and M. Head-Gordon, Phys. Chem. Chem. Phys. 11, 11297 (2009).

[417]

I. Mayer and P.-O. Löwdin, Chem. Phys. Lett. 202, 1 (1993).

[418]

M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong, page 155, World Scientific, Singapore, 1995.

[419]

A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).

[420]

S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 (1999).

[421]

A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem. , 2019 (2013).

[422]

F. Liu et al., Mol. Phys. 108, 2791 (2010).

[423]

D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).

[424]

M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem. Phys. 128, 044118 (2008).

[425]

Y. A. Bernard, Y. Shao, and A. I. Krylov, J. Chem. Phys. 136, 204103 (2012).

[426]

F. Wang and T. Ziegler, J. Chem. Phys. 121, 12191 (2004).

[427]

M. Seth, G. Mazur, and T. Ziegler, Theor. Chem. Acc. 129, 331 (2011).

[428]

N. A. Besley, Chem. Phys. Lett. 390, 124 (2004).

[429]

N. A. Besley, M. T. Oakley, A. J. Cowan, and J. D. Hirst, J. Am. Chem. Soc. 126, 13502 (2004).

[430]

N. A. Besley, J. Chem. Phys. 122, 184706 (2005).

[431]

D. M. Rogers, N. A. Besley, P. O’Shea, and J. D. Hirst, J. Phys. Chem. B 109, 23061 (2005).

[432]

J. Liu and W. Liang, J. Chem. Phys. 138, 024101 (2013).

[433]

J. Liu and W. Liang, J. Chem. Phys. 135, 014113 (2011).

[434]

J. Liu and W. Liang, J. Chem. Phys. 135, 184111 (2011).

[435]

N. A. Besley, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 130, 124308 (2009).

[436]

M. Filatov and S. Shaik, Chem. Phys. Lett. 304, 429 (1999).

[437]

T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys. 138, 164101 (2013).

[438]

M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).

[439]

M. Head-Gordon, D. Maurice, and M. Oumi, Chem. Phys. Lett. 246, 114 (1995).

[440]

Y. M. Rhee and M. Head-Gordon, J. Phys. Chem. A 111, 5314 (2007).

[441]

M. Oumi, D. Maurice, T. J. Lee, and M. Head-Gordon, Chem. Phys. Lett. 279, 151 (1997).

[442]

M. Head-Gordon, M. Oumi, and D. Maurice, Mol. Phys. 96, 593 (1999).

[443]

D. Casanova, Y. M. Rhee, and M. Head-Gordon, J. Chem. Phys. 128, 164106 (2008).

[444]

H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).

[445]

J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).

[446]

A. I. Krylov, C. D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 6509 (2000).

[447]

A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).

[448]

H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. Symp. 18, 255 (1984).

[449]

H. Koch, H. J. A. Jensen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).

[450]

S. V. Levchenko and A. I. Krylov, J. Chem. Phys. 120, 175 (2004).

[451]

A. I. Krylov, Chem. Phys. Lett. 338, 375 (2001).

[452]

D. Sinha, D. Mukhopadhya, R. Chaudhuri, and D. Mukherjee, Chem. Phys. Lett. 154, 544 (1989).

[453]

J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).

[454]

M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).

[455]

S. V. Levchenko, T. Wang, and A. I. Krylov, J. Chem. Phys. 122, 224106 (2005).

[456]

P. A. Pieniazek, S. E. Bradforth, and A. I. Krylov, J. Chem. Phys. 129, 074104 (2008).

[457]

A. A. Golubeva, P. A. Pieniazek, and A. I. Krylov, J. Chem. Phys. 130, 124113 (2009).

[458]

A. I. Krylov, Acc. Chem. Res. 39, 83 (2006).

[459]

D. Casanova, L. V. Slipchenko, A. I. Krylov, and M. Head-Gordon, J. Chem. Phys. 130, 044103 (2009).

[460]

M. Wladyslawski and M. Nooijen, in Low-Lying Potential Energy Surfaces, volume 828 of ACS Symposium Series, page 65, American Chemical Society, Washington, D. C., 2002.

[461]

T. Kuś and A. I. Krylov, J. Chem. Phys. 135, 084109 (2011).

[462]

T. Kuś and A. I. Krylov, J. Chem. Phys. 136, 244109 (2012).

[463]

K. B. Bravaya, D. Zuev, E. Epifanovsky, and A. I. Krylov, J. Chem. Phys. 138, 124106 (2013).

[464]

T.-C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky, and A. I. Krylov, J. Phys. Chem. Lett. 5, 310 (2014).

[465]

T.-C. Jagau, K. B. Bravaya, and A. I. Krylov, Annu. Rev. Phys. Chem. 68, 525 (2017).

[466]

Z. Benda and T.-C. Jagau, J. Chem. Phys. 146, 031101 (2017).

[467]

J. F. Stanton and J. Gauss, J. Chem. Phys. 103, 1064 (1995).

[468]

A. Sadybekov and A. Krylov, Coupled-cluster based approach for core-ionized and core-excited states in condensed phase: Theory and application to different protonated forms of aqueous glycine, (in preparation).

[469]

K. Nanda and A. I. Krylov, J. Chem. Phys. 142, 064118 (2015).

[470]

E. Epifanovsky, K. Klein, S. Stopkowicz, J. Gauss, and A. Krylov, J. Chem. Phys. 143, 064102 (2015).

[471]

A. Tajti and P. G. Szalay, J. Chem. Phys. 131, 124104 (2009).

[472]

S. Faraji, S. Matsika, E. Epifanovsky, X. Feng, and A. Krylov, Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference configuration interaction, (in preparation).

[473]

K. Nanda and A. I. Krylov, J. Chem. Phys. 145, 204116 (2016).

[474]

S. Hirata, M. Nooijen, and R. J. Bartlett, Chem. Phys. Lett. 326, 255 (2000).

[475]

P. U. Manohar and A. I. Krylov, J. Chem. Phys. 129, 194105 (2008).

[476]

P. U. Manohar, J. F. Stanton, and A. I. Krylov, J. Chem. Phys. 131, 114112 (2009).

[477]

C. M. Oana and A. I. Krylov, J. Chem. Phys. 127, 234106 (2007).

[478]

C. M. Oana and A. I. Krylov, J. Chem. Phys. 131, 124114 (2009).

[479]

M. Wormit et al., Mol. Phys. 112, 774 (2014).

[480]

P. H. Harbach, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 064113 (2014).

[481]

C. M. Krauter, M. Pernpointner, and A. Dreuw, J. Chem. Phys. 138, 044107 (2013).

[482]

J. Wenzel, M. Wormit, and A. Dreuw, J. Comput. Chem. 35, 1900 (2014).

[483]

J. Wenzel, M. Wormit, and A. Dreuw, J. Chem. Theory Comput. 10, 4583 (2014).

[484]

J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw, J. Chem. Phys. 142, 214104 (2015).

[485]

J. Schirmer, Phys. Rev. A 26, 2395 (1982).

[486]

J. Schirmer and A. B. Trofimov, J. Chem. Phys. 120, 11449 (2004).

[487]

A. B. Trofimov and J. Schirmer, J. Phys. B 28, 2299 (1995).

[488]

A. B. Trofimov, G. Stelter, and J. Schirmer, J. Chem. Phys. 111, 9982 (1999).

[489]

A. B. Trofimov, G. Stelter, and J. Schirmer, J. Chem. Phys. 117, 6402 (2002).

[490]

A. Hellweg, S. A. Grün, and C. Hättig, Phys. Chem. Chem. Phys. 10, 4119 (2008).

[491]

N. O. Winter and C. Hättig, J. Chem. Phys. 134, 184101 (2011).

[492]

L. S. Cederbaum, W. Domcke, and J. Schirmer, Phys. Rev. A 22, 206 (1980).

[493]

A. Barth and L. S. Cederbaum, Phys. Rev. A 12223, 1038 (1981).

[494]

D. Lefrancois, M. Wormit, and A. Dreuw, J. Chem. Phys. 143, 124107 (2015).

[495]

J.-M. Mewes et al., J. Phys. Chem. A 119, 5446 (2015).

[496]

J.-M. Mewes, J. M. Herbert, and A. Dreuw, Phys. Chem. Chem. Phys. 19, 1644 (2017).

[497]

S. Prager, A. Zech, F. Aquilante, A. Dreuw, and T. A. Wesolowski, J. Chem. Phys. 144, 204103 (2016).

[498]

T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993).

[499]

T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008).

[500]

D. Casanova and M. Head-Gordon, Phys. Chem. Chem. Phys. 11, 9779 (2009).

[501]

P. M. Zimmerman, F. Bell, M. Goldey, A. T. Bell, and M. Head-Gordon, J. Chem. Phys. 137, 164110 (2012).

[502]

F. Bell, P. M. Zimmerman, D. Casanova, M. Goldey, and M. Head-Gordon, Phys. Chem. Chem. Phys. 15, 358 (2013).

[503]

D. Casanova, J. Comput. Chem. 34, 720 (2013).

[504]

F. Bell, D. Casanova, and M. Head-Gordon, J. Am. Chem. Soc. 132, 11314 (2010).

[505]

P. M. Zimmerman, F. Bell, D. Casanova, and M. Head-Gordon, J. Am. Chem. Soc. 133, 19944 (2011).

[506]

D. Casanova, J. Chem. Phys. 137, 084105 (2012).

[507]

D. Casanova, J. Chem. Phys. 140, 144111 (2014).

[508]

A. V. Luzanov, D. Casanova, X. Feng, and A. I. Krylov, J. Chem. Phys. 142, 224104 (2015).

[509]

D. Casanova and A. I. Krylov, J. Chem. Phys. 144 (2016).

[510]

N. A. Besley and F. A. Asmuruf, Phys. Chem. Chem. Phys. 12, 12024 (2010).

[511]

X. Li et al., Phys. Chem. Chem. Phys. 7, 233 (2005).

[512]

Y. Zhu and J. M. Herbert, Predictor/corrector methods for efficient propagation of the time-dependent Kohn-Sham equations, (in preparation).

[513]

R. L. Martin, J. Chem. Phys. 118, 4775 (2003).

[514]

F. Plasser, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 024106 (2014).

[515]

F. Plasser, S. A. Bäppler, M. Wormit, and A. Dreuw, J. Chem. Phys. 141, 024107 (2014).

[516]

A. V. Luzanov, A. A. Sukhorukov, and V. E. Umanskii, Theor. Exp. Chem. 10, 354 (1976).

[517]

I. Mayer, Chem. Phys. Lett. 437, 284 (2007).

[518]

P. R. Surján, Chem. Phys. Lett. 439, 393 (2007).

[519]

Effective Core Potentials (Chapter 8).

[520]

S. Huzinaga, Comp. Phys. Rep. 2, 279 (1985).

[521]

E. R. Davidson and D. Feller, Chem. Rev. 86, 681 (1986).

[522]

D. Feller and E. R. Davidson, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, volume 1, page 1, Wiley-VCH, New York, 1990.

[523]

Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington  99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt or Don Jones for further information.

[524]

Basis Sets (Chapter 7).

[525]

P. A. Christiansen, W. C. Ermler, and K. S. Pitzer, Annu. Rev. Phys. Chem. 36, 407 (1985).

[526]

P. Pyykko, Chem. Rev. 88, 563 (1988).

[527]

M. S. Gordon and T. R. Cundari, Coord. Chem. Rev. 147, 87 (1996).

[528]

G. Frenking et al., in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, volume 8, page 63, Wiley-VCH, New York, 1996.

[529]

T. R. Cundari, M. T. Benson, M. L. Lutz, and S. O. Sommerer, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, volume 8, page 145, Wiley-VCH, New York, 1996.

[530]

J. Almlöf and O. Gropen, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd, volume 8, page 203, Wiley-VCH, New York, 1996.

[531]

L. R. Kahn and W. A. Goddard III, J. Chem. Phys. 56, 2685 (1972).

[532]

S. C. McKenzie, E. Epifanovsky, A. T. B. Gilbert, and P. M. W. Gill, An efficient method for computing effective core potential integrals over Gaussian basis functions, (in preparation).

[533]

F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

[534]

Geometry Optimization (Appendix A).

[535]

S. M. Sharada, A. T. Bell, and M. Head-Gordon, J. Chem. Phys. 140, 164115 (2014).

[536]

G. Mills and H. H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994).

[537]

G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).

[538]

E. Weinan, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).

[539]

B. Peters, A. Heyden, A. T. Bell, and A. Chakraborty, J. Chem. Phys. 120, 7877 (2004).

[540]

A. Behn, P. M. Zimmerman, A. T. Bell, and M. Head-Gordon, J. Chem. Phys. 135, 224108 (2011).

[541]

S. M. Sharada, P. M. Zimmerman, A. T. Bell, and M. Head-Gordon, J. Chem. Theory Comput. 8, 5166 (2012).

[542]

J. Baker, J. Comput. Chem. 7, 385 (1986).

[543]

Y. Kumeda, D. J. Wales, and L. J. Munro, Chem. Phys. Lett. 341, 185 (2001).

[544]

J. Baker, A. Kessi, and B. Delley, J. Chem. Phys. 105, 192 (1996).

[545]

G. Fogarasi, X. Zhou, P. W. Taylor, and P. Pulay, J. Am. Chem. Soc. 114, 8191 (1992).

[546]

G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).

[547]

A. Heyden, B. Peters, A. T. Bell, and F. J. Keil, J. Phys. Chem. B 109, 1857 (2005).

[548]

A. Heyden, A. T. Bell, and F. J. Keil, J. Chem. Phys. 123, 224101 (2005).

[549]

M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, and T. J. Martínez, J. Am. Chem. Soc. 131, 6377 (2009).

[550]

J. Ribas-Arino, M. Shiga, and D. Marx, Angew. Chem. 121, 4254 (2009).

[551]

J. Ribas-Arino, M. Shiga, and D. Marx, Angew. Chem. Int. Ed. Engl. 48, 4190 (2009).

[552]

K. Wolinski and J. Baker, Mol. Phys. 107, 2403 (2009).

[553]

T. Stauch and A. Dreuw, Chem. Rev. 116, 14137 (2016).

[554]

K. Fukui, J. Phys. Chem. 74, 4161 (1970).

[555]

K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 215 (1977).

[556]

M. W. Schmidt, M. S. Gordon, and M. Dupuis, J. Am. Chem. Soc. 107, 2585 (1985).

[557]

B. G. Levine, C. Ko, J. Quenneville, and T. J. Mart\'{\i }nez, Mol. Phys. 104, 1039 (2006).

[558]

Q. Ou, S. Fatehi, E. Alguire, Y. Shao, and J. Subotnik, J. Chem. Phys. 141, 024114 (2014).

[559]

M. Huix-Rotllant et al., Phys. Chem. Chem. Phys. 12, 12811 (2010).

[560]

X. Zhang and J. M. Herbert, J. Phys. Chem. B 118, 7806 (2014).

[561]

B. G. Levine, J. D. Coe, and T. J. Martinez, J. Phys. Chem. B 112, 405 (2008).

[562]

S. Maeda, K. Ohno, and K. Morokuma, J. Chem. Theory Comput. 6, 1538 (2010).

[563]

M. J. Bearpark, M. A. Robb, and H. B. Schlegel, Chem. Phys. Lett. 223, 269 (1994).

[564]

X. Zhang and J. M. Herbert, J. Chem. Phys. 143, 234107 (2015).

[565]

Y. Harabuchi, K. Keipert, F. Zahariev, T. Taketsugu, and M. S. Gordon, J. Phys. Chem. A 118, 11987 (2014).

[566]

K. D. Closser, O. Gessner, and M. Head-Gordon, J. Chem. Phys. 140, 134306 (2014).

[567]

J. M. Herbert and M. Head-Gordon, Phys. Chem. Chem. Phys. 7, 3269 (2005).

[568]

P. Pulay and G. Fogarasi, Chem. Phys. Lett. 386, 272 (2004).

[569]

C. M. Aikens et al., Theor. Chem. Acc. 110, 233 (2004).

[570]

J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. Symp. 13, 225 (1979).

[571]

P. P. Kombrath, J. Kong, T. R. Furlani, and M. Head-Gordon, Mol. Phys. 100, 1755 (2002).

[572]

G. Bussi and M. Parrinello, Phys. Rev. E 75, 056707 (2007).

[573]

G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).

[574]

S. Nosé, J. Chem. Phys. 81, 511 (1984).

[575]

S. Nosé, Prog. Theor. Phys. Supp. 103, 1 (1991).

[576]

W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

[577]

M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem. Phys. 43, 3259 (1965).

[578]

R. Porter, Annu. Rev. Phys. Chem. 25, 317 (1974).

[579]

R. Porter, L. Raff, and W. H. Miller, J. Chem. Phys. 63, 2214 (1975).

[580]

D. S. Lambrecht, G. N. I. Clark, T. Head-Gordon, and M. Head-Gordon, J. Phys. Chem. A 115, 5928 (2011).

[581]

E. Ramos-Cordoba, D. S. Lambrecht, and M. Head-Gordon, Faraday Discuss. 150, 345 (2011).

[582]

G. Czako, A. L. Kaledin, and J. M. Bowman, J. Chem. Phys. 132, 164103 (2010).

[583]

J. C. Tully, J. Chem. Phys. 93, 1061 (1990).

[584]

S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101, 4657 (1994).

[585]

J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).

[586]

J. E. Subotnik, J. Phys. Chem. A 114, 12083 (2011).

[587]

B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012).

[588]

NBO 5.0 manual: www.chem.wisc.edu/$\sim $nbo5.

[589]

P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).

[590]

C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361 (1990).

[591]

J. M. Herbert, L. D. Jacobson, K. U. Lao, and M. A. Rohrdanz, Phys. Chem. Chem. Phys. 14, 7679 (2012).

[592]

Z. C. Holden, R. M. Richard, and J. M. Herbert, J. Chem. Phys. 139, 244108 (2013).

[593]

F. L. Hirshfeld, Theor. Chem. Acc. 44, 129 (1977).

[594]

A. V. Marenich, S. V. Jerome, C. J. Cramer, and D. G. Truhlar, J. Chem. Theory Comput. 8, 527 (2012).

[595]

P. Bultinck, C. Van Alsenoy, P. W. Ayers, and R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007).

[596]

D. E. P. Vanpoucke, P. Bultinck, and I. Van Driessche, J. Comput. Chem. 34, 405 (2013).

[597]

D. M. Elking, L. Perera, and L. G. Pedersen, Comput. Phys. Commun. 183, 390 (2012).

[598]

S. N. Steinmann and C. Corminbeoeuf, J. Chem. Theory Comput. 6, 1990 (2010).

[599]

C. F. Williams and J. M. Herbert, J. Phys. Chem. A 112, 6171 (2008).

[600]

Y. M. Rhee and M. Head-Gordon, J. Am. Chem. Soc. 130, 3878 (2008).

[601]

F. Plasser and H. Lischka, J. Chem. Theory Comput. 8, 2777 (2012).

[602]

S. A. Bäppler, F. Plasser, M. Wormit, and A. Dreuw, Phys. Rev. A 90, 052521 (2014).

[603]

F. Plasser et al., J. Comput. Chem. 36, 1609 (2015).

[604]

S. A. Mewes, F. Plasser, and A. Dreuw, J. Chem. Phys. 143, 171101 (2015).

[605]

F. Plasser, J. Chem. Phys. 144, 194107 (2016).

[606]

M. Head-Gordon, Chem. Phys. Lett. 372, 508 (2003).

[607]

J. M. Herbert, The quantum chemistry of loosely-bound electrons, in Reviews in Computational Chemistry, edited by A. L. Parill and K. Lipkowitz, volume 28, page 391, Wiley, 2015.

[608]

S. A. Mewes, J.-M. Mewes, A. Dreuw, and F. Plasser, Phys. Chem. Chem. Phys. 18, 2548 (2016).

[609]

E. D. Glendening, C. R. Landis, and F. Weinhold, J. Comput. Chem. 34, 1429 (2013).

[610]

E. D. Glendening et al., 2013.

[611]

F. Weinhold, in Computational Methods in Photochemistry, edited by A. G. Kutateladze, volume 13 of Molecular and Supramolecular Photochemistry, page 393, Taylor & Francis, 2005.

[612]

S. F. Boys, Rev. Mod. Phys. 32, 296 (1960).

[613]

S. F. Boys, in Quantum Theory of Atoms, Molecules, and the Solid State, edited by P.-O. Löwdin, page 253, Academic, New York, 1966.

[614]

J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).

[615]

C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963).

[616]

J. E. Subotnik, Y. Shao, W. Liang, and M. Head-Gordon, J. Chem. Phys. 121, 9220 (2004).

[617]

G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol. Design 14, 123 (2000).

[618]

The MolDen program may be freely downloaded from www.cmbi.ru.nl/molden/molden.html.

[619]

B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod. 16, 133 (1998).

[620]

MacMolPlt may be downloaded from www.sci.ameslab.gov/$\sim $brett/MacMolPlt.

[621]

W. Humphrey, A. Dalke, and K. Schulten, J. Molec. Graphics 14, 33 (1996).

[622]

The VMD program may be downloaded from www.ks.uiuc.edu/Research/vmd.

[623]

E. R. Johnson et al., J. Chem. Phys. 123, 024101 (2005).

[624]

J. Contreras-Garc\'{\i }a et al., J. Chem. Theory Comput. 7, 625 (2011).

[625]

A. C. Simmonett, A. T. B. Gilbert, and P. M. W. Gill, Mol. Phys. 103, 2789 (2005).

[626]

T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[627]

R. T. Pack and W. B. Brown, J. Chem. Phys. 45, 556 (1966).

[628]

V. A. Rassolov and D. M. Chipman, J. Chem. Phys. 104, 9908 (1996).

[629]

D. M. Chipman, Theor. Chem. Acc. 76, 73 (1989).

[630]

V. A. Rassolov and D. M. Chipman, J. Chem. Phys. 105, 1470 (1996).

[631]

V. A. Rassolov and D. M. Chipman, J. Chem. Phys. 105, 1479 (1996).

[632]

J. O. Hirschfelder, J. Chem. Phys. 33, 1462 (1960).

[633]

B. Wang, J. Baker, and P. Pulay, Phys. Chem. Chem. Phys. 2, 2131 (2000).

[634]

A. J. Stone, Chem. Phys. Lett. 83, 233 (1981).

[635]

A. J. Stone and M. Alderton, Mol. Phys. 56, 1047 (1985).

[636]

A. J. Stone, J. Chem. Theory Comput. 1, 1128 (2005).

[637]

P. M. W. Gill, D. P. O’Neill, and N. A. Besley, Theor. Chem. Acc. 109, 241 (2003).

[638]

A. M. Lee and P. M. W. Gill, Chem. Phys. Lett. 313, 271 (1999).

[639]

P. M. W. Gill, Chem. Phys. Lett. 270, 193 (1997).

[640]

N. A. Besley, A. M. Lee, and P. M. W. Gill, Mol. Phys. 100, 1763 (2002).

[641]

N. A. Besley, D. P. O’Neill, and P. M. W. Gill, J. Chem. Phys. 118, 2033 (2003).

[642]

E. Wigner, Phys. Rev. 40, 749 (1932).

[643]

J. Cioslowski and G. Liu, J. Chem. Phys. 105, 4151 (1996).

[644]

B. G. Johnson and J. Florián, Chem. Phys. Lett. 247, 120 (1995).

[645]

P. P. Korambath, J. Kong, T. R. Furlani, and M. Head-Gordon, Mol. Phys. 100, 1755 (2002).

[646]

C. W. Murray, G. J. Laming, N. C. Handy, and R. D. Amos, Chem. Phys. Lett. 199, 551 (1992).

[647]

A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502 (1996).

[648]

B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

[649]

N. A. Besley and K. A. Metcalf, J. Chem. Phys. 126, 035101 (2007).

[650]

N. A. Besley and J. A. Bryan, J. Phys. Chem. C 112, 4308 (2008).

[651]

M. W. D. Hanson-Heine, M. W. George, and N. A. Besley, J. Chem. Phys. 136, 224102 (2012).

[652]

W. J. Zheng and B. R. Brooks, Biophys. J. 88, 3109 (2005).

[653]

H. L. Woodcock et al., J. Chem. Phys. 129, 214109 (2008).

[654]

A. Ghysels et al., J. Comput. Chem. 31, 994 (2010).

[655]

C. R. Jacob and M. Reiher, J. Chem. Phys. 130, 084106 (2009).

[656]

C. R. Jacob, S. Luber, and M. Reiher, Chem. Eur. J 15, 13491 (2009).

[657]

C. R. Jacob, S. Luber, and M. Reiher, J. Phys. Chem. B 113, 6558 (2009).

[658]

M. W. D. Hanson-Heine, F. S. Husseini, J. D. Hirst, and N. A. Besley, J. Chem. Theory Comput. 12, 1905 (2016).

[659]

X. Cheng and R. P. Steele, J. Chem. Phys. 141, 104105 (2014).

[660]

P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365 (2014).

[661]

M. W. D. Hanson-Heine, J. Chem. Phys. 143, 164104 (2015).

[662]

A. Miani, E. Cancès, P. Palmieri, A. Trombetti, and N. C. Handy, J. Chem. Phys. 112, 248 (2000).

[663]

R. Burcl, N. C. Handy, and S. Carter, Spectrochim. Acta A 59, 1881 (2003).

[664]

K. Yagi, K. Hirao, T. Taketsuga, M. W. Schmidt, and M. S. Gordon, J. Chem. Phys. 121, 1383 (2004).

[665]

V. Barone, J. Chem. Phys. 122, 014108 (2005).

[666]

S. D. Peyerimhoff, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer et al., page 2646, Wiley, Chichester, United Kingdom, 1998.

[667]

T. Carrington, Jr., in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer et al., page 3157, Wiley, Chichester, United Kingdom, 1998.

[668]

A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933).

[669]

E. B. Wilson and J. J. B. Howard, J. Chem. Phys. 4, 260 (1936).

[670]

H. H. Nielsen, Phys. Rev. 60, 794 (1941).

[671]

J. Neugebauer and B. A. Hess, J. Chem. Phys. 118, 7215 (2003).

[672]

R. J. Whitehead and N. C. Handy, J. Mol. Spect. 55, 356 (1975).

[673]

C. Y. Lin, A. T. B. Gilbert, and P. M. W. Gill, Theor. Chem. Acc. 120, 23 (2008).

[674]

W. D. Allen et al., Chem. Phys. 145, 427 (1990).

[675]

I. M. Mills, in Molecular Spectroscopy: Modern Research, edited by K. N. Rao and C. W. Mathews, chapter 3.2, Academic Press, New York, 1972.

[676]

D. A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer III, Chem. Phys. 123, 187 (1988).

[677]

H. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951).

[678]

C. Ochsenfeld, Phys. Chem. Chem. Phys. 2, 2153 (2000).

[679]

C. Ochsenfeld, S. P. Brown, I. Schnell, J. Gauss, and H. W. Spiess, J. Am. Chem. Soc. 123, 2597 (2001).

[680]

R. Ditchfield, Mol. Phys. 27, 789 (1974).

[681]

K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

[682]

M. Häser, R. Ahlrichs, H. P. Baron, P. Weiss, and H. Horn, Theor. Chem. Acc. 83, 455 (1992).

[683]

T. Helgaker and M. J. K. Ruud, Chem. Rev. 99, 293 (1990).

[684]

C. Ochsenfeld, J. Kussmann, and F. Koziol, Angew. Chem. 116, 4585 (2004).

[685]

J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 204103 (2007).

[686]

C. Ochsenfeld and M. Head-Gordon, Chem. Phys. Lett. 270, 399 (1997).

[687]

P. von Schleyer, C. Maerker, A. Dransfield, H. Jiao, and N. J. R. v. E. Hommes, J. Am. Chem. Soc. 118, 6317 (1996).

[688]

S. P. Brown et al., Angew. Chem. Int. Ed. Engl. 40, 717 (2001).

[689]

C. Ochsenfeld et al., Solid State Nucl. Mag. 22, 128 (2002).

[690]

J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 054103 (2007).

[691]

F. London, J. Phys. Radium 8, 397 (1937).

[692]

J. Gauss, Ber. Bunsenges. Phys. Chem. 99, 1001 (1995).

[693]

C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett. 230, 8 (1994).

[694]

T. Helgaker, M. Watson, and N. Handy, J. Chem. Phys. 113, 9402 (2000).

[695]

V. Sychrovský, J. Gräfenstein, and D. Cremer, J. Chem. Phys. 113, 3530 (2000).

[696]

T. Bally and P. R. Rablen, J. Org. Chem 76, 4818 (2011).

[697]

F. Jensen, J. Chem. Theory Comput. 2, 1360 (2006).

[698]

H. Sekino and R. J. Bartlett, J. Chem. Phys. 85, 976 (1986).

[699]

S. P. Karna and M. Dupuis, J. Comput. Chem. 12, 487 (1991).

[700]

R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).

[701]

A. A. Voityuk and N. Rösch, J. Chem. Phys. 117, 5607 (2002).

[702]

J. E. Subotnik, S. Yeganeh, R. J. Cave, and M. A. Ratner, J. Chem. Phys. 129, 244101 (2008).

[703]

J. E. Subotnik, R. J. Cave, R. P. Steele, and N. Shenvi, J. Chem. Phys. 130, 234102 (2009).

[704]

C.-P. Hsu, Z.-Q. You, and H.-C. Chen, J. Phys. Chem. C 112, 1204 (2008).

[705]

Z. You and C.-P. Hsu, J. Chem. Phys. 133, 074105 (2010).

[706]

J. E. Subotnik, J. Vura-Weis, A. Sodt, and M. A. Ratner, J. Phys. Chem. A 114, 8665 (2010).

[707]

J. Vura-Weis, M. Wasielewski, M. D. Newton, and J. E. Subotnik, J. Phys. Chem. C 114, 20449 (2010).

[708]

K. Ohta, G. L. Closs, K. Morokuma, and N. J. Green, J. Am. Chem. Soc. 108, 1319 (1986).

[709]

A. Broo and S. Larsson, Chem. Phys. 148, 103 (1990).

[710]

A. Farazdel, M. Dupuis, E. Clementi, and A. Aviram, J. Am. Chem. Soc. 112, 4206 (1990).

[711]

L. Y. Zhang, R. A. Friesner, and R. B. Murphy, J. Chem. Phys. 107, 450 (1997).

[712]

M. D. Newton, Chem. Rev. 91, 767 (1991).

[713]

H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr, J. Chem. Phys. 47, 1936 (1967).

[714]

K. Takatsuka, T. Fueno, and K. Yamaguchi, Theor. Chem. Acc. 48, 175 (1978).

[715]

R. C. Bochicchio, J. Mol. Struct. (Theochem) 429, 229 (1998).

[716]

V. N. Staroverov and E. R. Davidson, Chem. Phys. Lett. 330, 161 (2000).

[717]

E. Proynov, J. Mol. Struct. (Theochem) 762, 159 (2006).

[718]

E. Proynov, F. Liu, and J. Kong, Phys. Rev. A 88, 032510 (2013).

[719]

A. D. Becke, J. Chem. Phys. 119, 2972 (2003).

[720]

S. Datta, Quantum transport: Atom to transistor, Cambridge University Press, Cambridge, 2005.

[721]

M. Di Ventra, Electron transport in nanoscale systems, Cambridge University Press, Cambridge, 2008.

[722]

J. G. Kirkwood, J. Chem. Phys. 2, 767 (1934).

[723]

L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).

[724]

J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

[725]

A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 , 799 (1993).

[726]

T. N. Truong and E. V. Stefanovich, Chem. Phys. Lett. 240, 253 (1995).

[727]

V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

[728]

M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comput. Chem. 24, 669 (2003).

[729]

D. M. Chipman, J. Chem. Phys. 112, 5558 (2000).

[730]

E. Cancès, J. Chem. Phys. 107, 3032 (1997).

[731]

E. Cancès and B. Mennucci, J. Chem. Phys. 114, 4744 (2001).

[732]

J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 106, 2999 (2005).

[733]

A. W. Lange and J. M. Herbert, J. Phys. Chem. Lett. 1, 556 (2010).

[734]

A. W. Lange and J. M. Herbert, J. Chem. Phys. 133, 244111 (2010).

[735]

A. W. Lange and J. M. Herbert, Chem. Phys. Lett. 509, 77 (2011).

[736]

J. M. Herbert and A. W. Lange, The polarizable continuum model for (bio)molecular electrostatics: Basic theory and recent advances for macromolecules and simulations, in Many-Body Effects and Electrostatics in Multi-Scale Computations of Biomolecules, edited by Q. Cui, P. Ren, and M. Meuwly, chapter 11, pages 363–416, Pan Stanford, 2016.

[737]

A. W. Lange, J. M. Herbert, B. J. Albrecht, and J. M. Herbert, Intrinsically smooth discretization of Connolly’s solvent-excluded molecular surface, (submitted).

[738]

J. Florián and A. Warshel, J. Phys. Chem. B 101, 5583 (1997).

[739]

J. Florián and A. Warshel, J. Phys. Chem. B 103, 10282 (1999).

[740]

A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Chem. Theory Comput. 3, 2011 (2007).

[741]

A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Chem. Theory Comput. 9, 609 (2013).

[742]

A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 2009 (6378).

[743]

A. Klamt and V. Jonas, J. Chem. Phys. 105, 9972 (1996).

[744]

K. Baldridge and A. Klamt, J. Chem. Phys. 106, 6622 (1997).

[745]

D. M. Chipman, Theor. Chem. Acc. 107, 80 (2002).

[746]

D. M. Chipman and M. Dupuis, Theor. Chem. Acc. 107, 90 (2002).

[747]

V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys. 107, 3210 (1997).

[748]

A. Pomogaeva and D. M. Chipman, J. Chem. Theory Comput. 7, 3952 (2011).

[749]

A. Pomogaeva and D. M. Chipman, J. Phys. Chem. A 117, 5812 (2013).

[750]

A. Pomogaeva and D. M. Chipman, J. Chem. Theory Comput. 10, 211 (2014).

[751]

A. Pomogaeva and D. M. Chipman, J. Phys. Chem. A 119, 5173 (2015).

[752]

C. J. Cramer and D. G. Truhlar, Acc. Chem. Res. 41, 760 (2008).

[753]

A. Klamt et al., Acc. Chem. Res. 42, 489 (2009).

[754]

A. Klamt, J. Phys. Chem. 99, 2225 (1995).

[755]

A. Klamt, F. Eckert, and W. Arlt, Annu. Rev. Chem. Biomol. Eng. 1, 101 (2010).

[756]

http://www.cosmologic.de/index.php.

[757]

A. Klamt, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 699 (2011).

[758]

R. C. Weast, editor, CRC Handbook of Chemistry and Physics, Chemical Rubber Company, Boca Rotan, 70th edition, 1989.

[759]

M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991).

[760]

M. Born, Z. Phys. 1, 45 (1920).

[761]

S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

[762]

J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem) 464, 211 (1999).

[763]

R. Bonaccorsi, P. Palla, and J. Tomasi, J. Am. Chem. Soc. 106, 1945 (1984).

[764]

J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

[765]

A. Bondi, J. Phys. Chem. 68, 441 (1964).

[766]

D. M. York and M. Karplus, J. Phys. Chem. A 103, 11060 (1999).

[767]

R. S. Rowland and R. Taylor, J. Phys. Chem. 100, 7384 (1996).

[768]

M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. A 113, 5806 (2009).

[769]

R. Cammi and B. Mennucci, J. Chem. Phys. 110, 9877 (1999).

[770]

M. Cossi and V. Barone, J. Chem. Phys. 115, 4708 (2001).

[771]

R. Cammi and J. Tomasi, Int. J. Quantum Chem. Symp. 29, 465 (1995).

[772]

M. Cossi and V. Barone, J. Phys. Chem. A 104, 10614 (2000).

[773]

R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, J. Chem. Phys. 125, 054103 (2006).

[774]

Z. You, J.-M. Mewes, A. Dreuw, and J. M. Herbert, J. Chem. Phys. 143, 204104 (2015).

[775]

C.-P. Hsu, G. R. Fleming, M. Head-Gordon, and T. Head-Gordon, J. Chem. Phys. 114, 3065 (2001).

[776]

A. V. Marenich et al., Chem. Sci. 2, 2143 (2011).

[777]

R. Cammi, S. Corni, B. Mennucci, and J. Tomasi, J. Chem. Phys. 122, 104513 (2005).

[778]

M. Caricato et al., J. Chem. Phys. 124, 124520 (2006).

[779]

R. Improta, G. Scalmani, M. J. Frisch, and V. Barone, J. Chem. Phys. 127, 074504 (2007).

[780]

H. Li and J. H. Jensen, J. Comput. Chem. 25, 1449 (2004).

[781]

A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

[782]

J. L. Pascual-Ahuir, E. Silla, and I. T. non, J. Comput. Chem. 15, 1127 (1994).

[783]

M. Cossi, B. Mennucci, and R. Cammi, J. Comput. Chem. 17, 57 (1996).

[784]

P. Li, H. Johnston, and R. Krasny, J. Comput. Phys. 228, 3858 (2009).

[785]

Z. You and J. M. Herbert, J. Chem. Theory Comput. 12, 4338 (2016).

[786]

C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 111, 408 (2007).

[787]

A. Schäfer, A. Klamt, D. Sattle, J. C. W. Lohrenz, and F. Eckert, Phys. Chem. Chem. Phys. 2, 2187 (2000).

[788]

A. Klamt, F. Eckert, and M. Hornig, J. Comput.-Aided Mol. Design 15, 355 (2001).

[789]

D. A. Liotard, G. D. Hawkins, G. C. Lynch, C. J. Cramer, and D. G. Truhlar, J. Comput. Chem. 16, 422 (1995).

[790]

C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Chem. Theory Comput. 1, 1133 (2005).

[791]

T. Zhu, J. Li, D. A. Liotard, C. J. Cramer, and D. G. Truhlar, J. Chem. Phys. 110, 5503 (1999).

[792]

J. D. Thompson, C. J. Cramer, and D. G. Truhlar, J. Chem. Phys. 119, 1661 (2003).

[793]

C. J. Cramer and D. G. Truhlar, in Free Energy Calculations and Rational Drug Design, edited by M. R. Reddy and M. D. Erion, page 63, Kluwer/Plenum, New York, 2001.

[794]

J. Li, C. J. Cramer, and D. G. Truhlar, Int. J. Quantum Chem. 77, 264 (2000).

[795]

U. C. Singh and P. A. Kollman, J. Comput. Chem. 7, 718 (1986).

[796]

G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari, and S. Goedecker, J. Chem. Phys. 144, 014103 (2016).

[797]

O. Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136, 064102 (2012).

[798]

M. P. Coons and J. M. Herbert, Non-equilibrium, anisotropic continuum boundary conditions for electronic structure calculations: Theory, implementation, and applications to compute vertical ionization energies of aqueous ions at the air/water interface, (in preparation).

[799]

H. L. Woodcock et al., J. Comput. Chem. 28, 1485 (2007).

[800]

J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).

[801]

N. Foloppe and A. D. MacKerell, J. Comput. Chem. 21, 86 (2000).

[802]

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 117, 11225 (1996).

[803]

T. Vreven and K. Morokuma, Annu. Rep. Comp. Chem. 2, 35 (2006).

[804]

H. M. Senn and W. Thiel, Topics Curr. Chem. 268, 173 (2007).

[805]

Y. Shao and J. Kong, J. Phys. Chem. A 111, 3661 (2007).

[806]

P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).

[807]

K. Nam, J. Gao, and D. M. York, J. Chem. Theory Comput. 1, 2 (2005).

[808]

D. Riccardi, P. Schaefer, and Q. Cui, J. Phys. Chem. B 109, 17715 (2005).

[809]

R. C. Walker, M. F. Crowley, and D. A. Case, J. Comput. Chem. 29, 1019 (2008).

[810]

B. R. Brooks et al., J. Comput. Chem. 30, 1545 (2009).

[811]

Z. C. Holden, M. P. Coons, and J. M. Herbert, Analytic gradients for periodic image charges derived from the electrostatic potential and application to Ewald summation in QM/MM calculations, (in preparation).

[812]

D. Das et al., J. Chem. Phys. 117, 10534 (2002).

[813]

P. N. Day et al., J. Chem. Phys. 105, 1968 (1996).

[814]

M. S. Gordon et al., J. Phys. Chem. A 105, 293 (2001).

[815]

M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1983).

[816]

D. Ghosh et al., J. Phys. Chem. A 114, 12739 (2010).

[817]

M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko, Chem. Rev. 112, 632 (2012).

[818]

I. A. Kaliman and L. V. Slipchenko, J. Comput. Chem. 34, 2284 (2013).

[819]

A. D. Buckingham, Q. Rev. Chem. Soc. 13, 183 (1959).

[820]

L. V. Slipchenko and M. S. Gordon, J. Comput. Chem. 28, 276 (2007).

[821]

M. A. Freitag, M. S. Gordon, J. H. Jensen, and W. J. Stevens, J. Chem. Phys. 112, 7300 (2000).

[822]

L. V. Slipchenko and M. S. Gordon, Mol. Phys. 107, 999 (2009).

[823]

I. Adamovic and M. S. Gordon, Mol. Phys. 103, 379 (2005).

[824]

K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).

[825]

J. H. Jensen and M. S. Gordon, Mol. Phys. 89, 1313 (1996).

[826]

J. H. Jensen and M. S. Gordon, J. Chem. Phys. 108, 4772 (1998).

[827]

L. V. Slipchenko, J. Phys. Chem. A 114, 8824 (2010).

[828]

D. Kosenkov and L. V. Slipchenko, J. Phys. Chem. A 115, 392 (2011).

[829]

D. W. Zhang and J. Z. H. Zhang, J. Chem. Phys. 119, 3599 (2003).

[830]

D. W. Zhang, X. H. Chen, and J. Z. H. Zhang, J. Comput. Chem. 24, 1846 (2003).

[831]

J. C. Flick, D. Kosenkov, E. G. Hohenstein, C. D. Sherrill, and L. V. Slipchenko, J. Chem. Theory Comput. 8, 2835 (2012).

[832]

F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012).

[833]

A. Zech, F. Aquilante, and T. A. Wesolowski, J. Chem. Phys. 143, 164106 (2015).

[834]

R. Z. Khaliullin, M. Head-Gordon, and A. T. Bell, J. Chem. Phys. 124, 204105 (2006).

[835]

P. R. Horn, E. J. Sundstrom, T. A. Baker, and M. Head-Gordon, J. Chem. Phys. 138, 134119 (2013).

[836]

R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon, J. Phys. Chem. A 111, 8753 (2007).

[837]

R. Z. Khaliullin, A. T. Bell, and M. Head-Gordon, J. Chem. Phys. 128, 184112 (2008).

[838]

R. Z. Khaliullin, A. T. Bell, and M. Head-Gordon, Chem. Eur. J 15, 851 (2009).

[839]

P. R. Horn and M. Head-Gordon, J. Chem. Phys. 143, 114111 (2015).

[840]

P. R. Horn and M. Head-Gordon, J. Chem. Phys. 144, 084118 (2016).

[841]

P. R. Horn, Y. Mao, and M. Head-Gordon, J. Chem. Phys. 144, 114107 (2016).

[842]

P. R. Horn, Y. Mao, and M. Head-Gordon, Phys. Chem. Chem. Phys. 18, 23067 (2016).

[843]

D. S. Levine, P. R. Horn, Y. Mao, and M. Head-Gordon, J. Chem. Theory Comput. 12, 4812 (2016).

[844]

Y. Mao, P. R. Horn, and M. Head-Gordon, Phys. Chem. Chem. Phys. 19, 5944 (2017).

[845]

W. Xie, L. Song, D. G. Truhlar, and J. Gao, J. Chem. Phys. 128, 234108 (2008).

[846]

L. D. Jacobson and J. M. Herbert, J. Chem. Phys. 134, 094118 (2011).

[847]

B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887 (1994).

[848]

K. Szalewicz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 254 (2012).

[849]

L. D. Jacobson, R. M. Richard, K. U. Lao, and J. M. Herbert, Annu. Rep. Comp. Chem. 9, 25 (2013).

[850]

K. U. Lao and J. M. Herbert, J. Phys. Chem. Lett. 3, 3241 (2012).

[851]

K. U. Lao and J. M. Herbert, J. Chem. Phys. 139, 034107 (2013).

[852]

K. U. Lao and J. M. Herbert, J. Phys. Chem. A 119, 235 (2015).

[853]

K. U. Lao and J. M. Herbert, J. Chem. Theory Comput. 12, 2569 (2016).

[854]

E. E. Dahlke and D. G. Truhlar, J. Chem. Theory Comput. 3, 46 (2007).

[855]

K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).

[856]

D. G. Fedorov and K. Kitaura, J. Phys. Chem. A 111, 6904 (2007).

[857]

A. F. Morrison, Z.-Q. You, and J. M. Herbert, J. Chem. Theory Comput. 10, 5366 (2014).

[858]

A. F. Morrison and J. M. Herbert, J. Phys. Chem. Lett. 6, 4390 (2015).

[859]

J. Liu and J. M. Herbert, J. Chem. Phys. 143, 034106 (2015).

[860]

J. Liu and J. M. Herbert, J. Chem. Theory Comput. 12, 157 (2016).

[861]

H. Stoll, G. Wagenblast, and H. Preuss, Theor. Chem. Acc. 57, 169 (1980).

[862]

E. Gianinetti, M. Raimondi, and E. Tornaghi, Int. J. Quantum Chem. 60, 157 (1996).

[863]

T. Nagata, O. Takahashi, K. Saito, and S. Iwata, J. Chem. Phys. 115, 3553 (2001).

[864]

W. Z. Liang and M. Head-Gordon, J. Chem. Phys. 120, 10379 (2004).

[865]

E. A. Cobar, R. Z. Khaliullin, R. G. Bergman, and M. Head-Gordon, Proc. Natl. Acad. Sci. USA 104, 6963 (2007).

[866]

R. C. Lochan, R. Z. Khaliullin, and M. Head-Gordon, Inorg. Chem. 47, 4032 (2008).

[867]

M. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 43 (2012).

[868]

Y. Mao, O. Demerdash, M. Head-Gordon, and T. Head-Gordon, J. Chem. Theory Comput. 12, 5422 (2016).

[869]

R. J. Azar, P. R. Horn, E. J. Sundstrom, and M. Head-Gordon, J. Chem. Phys. 138, 084102 (2013).

[870]

J. Gao, J. Chem. Phys. 109, 2346 (1998).

[871]

W. Xie and J. Gao, J. Chem. Theory Comput. 3, 1890 (2007).

[872]

W. Xie, M. Orozco, D. G. Truhlar, and J. Gao, J. Chem. Theory Comput. 5, 459 (2009).

[873]

B. Jeziorski et al., SAPT: A program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, in Methods and Techniques in Computational Chemistry: METECC-94, edited by E. Clementi, volume B, chapter 3, page 79, STEF, Cagliari, 1993.

[874]

E. G. Hohenstein and C. D. Sherrill, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 304 (2012).

[875]

K. U. Lao and J. M. Herbert, J. Phys. Chem. A 116, 3042 (2012).

[876]

H. L. Williams and C. F. Chabalowski, J. Phys. Chem. A , 646 (2001).

[877]

A. J. Misquitta and K. Szalewicz, Chem. Phys. Lett. 357, 301 (2002).

[878]

K. U. Lao and J. M. Herbert, J. Chem. Phys. 140, 044108 (2014).

[879]

H. L. Williams, E. M. Mas, and K. Szalewicz, J. Chem. Phys. 103, 7374 (1995).

[880]

A. Hesselmann, J. Phys. Chem. A 115, 11321 (2011).

[881]

R. Podeszwa, K. Pernal, K. Patkowski, and K. Szalewicz, J. Phys. Chem. Lett. 1, 550 (2010).

[882]

E. Ronca, L. Belpassi, and F. Tarantelli, ChemPhysChem 15, 2682 (2014).

[883]

J. Řezáč and A. de la Lande, J. Chem. Theory Comput. 11, 528 (2015).

[884]

R. M. Richard, K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674 (2013).

[885]

R. M. Richard, K. U. Lao, and J. M. Herbert, J. Chem. Phys. 139, 224102 (2013).

[886]

M. Kamiya, S. Hirata, and M. Valiev, J. Chem. Phys. 128, 074103 (2008).

[887]

D. G. Fedorov and K. Kitaura, in The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems, edited by D. G. Fedorov and K. Kitaura, chapter 2, page 5, CRC Press, Boca Rotan, FL, 2009.

[888]

T. Nakano et al., Chem. Phys. Lett. 351, 475 (2002).

[889]

D. G. Fedorov, L. V. Slipchenko, and K. Kitaura, J. Phys. Chem. A 114, 8742 (2010).

[890]

R. M. Richard, K. U. Lao, and J. M. Herbert, J. Chem. Phys. 141, 014108 (2014).

[891]

K. U. Lao, K.-Y. Liu, R. M. Richard, and J. M. Herbert, J. Chem. Phys. 144, 164105:1 (2016).

[892]

A. Morrison and J. M. Herbert, Analytic derivative couplings and electron/phonon couplings for an ab initio Frenkel-Davydov exciton model: Application to triplet exciton mobility in crystalline tetracene, (in preparation).

[893]

C. M. Isborn, B. D. Mar, B. F. E. Curchod, I. Tavernelli, and T. J. Mart\'{\i }nex, J. Phys. Chem. B 117, 12189 (2013).

[894]

K. D. Closser, Q. Ge, Y. Mao, Y. Shao, and M. Head-Gordon, J. Chem. Theory Comput. 11, 5791 (2015).

[895]

Q. Ge et al., J. Chem. Phys. 146, 044111 (2017).

[896]

C. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).

[897]

J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, J. Phys. Chem. 87, 2745 (1983).

[898]

A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).

[899]

P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem) 114, 31 (1984).

[900]

P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc. 101, 2550 (1979).

[901]

P. Pulay and G. Fogarasi, J. Chem. Phys. 96, 2856 (1992).

[902]

J. Baker, J. Comput. Chem. 13, 240 (1992).

[903]

J. Baker and D. Bergeron, J. Comput. Chem. 14, 1339 (1993).

[904]

J. Baker, J. Comput. Chem. 18, 1079 (1997).

[905]

D. Poppinger, Chem. Phys. Lett. 35, 550 (1975).

[906]

J. Baker and W. J. Hehre, J. Comput. Chem. 12, 606 (1991).

[907]

H. B. Schlegel, Theor. Chem. Acc. 66, 333 (1984).

[908]

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.

[909]

R. Fletcher, Practial Methods of Optimization, volume 2, Wiley, New York, 1981.

[910]

S. Califano, Vibrational States, Wiley, London, 1976.

[911]

P. M. W. Gill, M. Head-Gordon, and J. A. Pople, J. Phys. Chem. 94, 5564 (1990).

[912]

P. M. W. Gill, Adv. Quantum Chem. 25, 142 (1994).

[913]

M. J. Frisch, B. G. Johnson, P. M. W. Gill, D. J. Fox, and R. H. Nobes, Chem. Phys. Lett. 206, 225 (1993).

[914]

P. M. W. Gill, B. G. Johnson, and J. A. Pople, Int. J. Quantum Chem. 40, 745 (1991).

[915]

P. M. W. Gill and J. A. Pople, Int. J. Quantum Chem. 40, 753 (1991).

[916]

P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys. Lett. 217, 65 (1994).

[917]

M. Head-Gordon and J. A. Pople, J. Chem. Phys. 89, 5777 (1988).

[918]

B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 206, 229 (1993).

[919]

B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 206, 239 (1993).

[920]

S. F. Boys, Proc. Roy. Soc. Ser. A 200, 542 (1950).

[921]

S. F. Boys, G. B. Cook, C. M. Reeves, and I. Shavitt, Nature 178, 1207 (1956).

[922]

J. A. Pople and W. J. Hehre, J. Comput. Phys. 27, 161 (1978).

[923]

M. Challacombe and E. Schwegler, J. Chem. Phys. 106, 5526 (1997).

[924]

E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726 (1996).

[925]

M. Dupuis, J. Rys, and H. F. King, J. Chem. Phys. 65, 111 (1976).

[926]

L. E. McMurchie and E. R. Davidson, J. Comput. Phys. 26, 218 (1978).

[927]

J. Almlöf, K. Faegri, and K. Korsell, J. Comput. Chem. 3, 385 (1982).

[928]

S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).

[929]

S. Obara and A. Saika, J. Chem. Phys. 89, 1540 (1988).

[930]

R. D. Adamson, Shell-pair economisation, Master’s thesis, Massey University, Palmerston North, New Zealand, 1995.

[931]

M. J. S. Dewar, Org. Mass. Spect. 28, 305 (1993).

[932]

M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.

[933]

B. G. Johnson, Development, Implementation, and Performance of Efficient Methodologies for Density Functional Calculations, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1993.

[934]

M. Challacombe, E. Schwegler, and J. Almlöf, J. Chem. Phys. 104, 4685 (1996).

[935]

M. Challacombe, E. Schwegler, and J. Almlöf, Modern developments in Hartree-Fock theory: Fast methods for computing the Coulomb matrix, Technical report, University of Minnesota and Minnesota Supercomputer Institute, Minneapolis, MN, 1995.

[936]

D. L. Strout and G. E. Scuseria, J. Chem. Phys. 102, 8448 (1995).

[937]

W. Yang, Phys. Rev. A 44, 7823 (1991).

[938]

W. Yang, Phys. Rev. Lett. 66, 1438 (1991).

[939]

W. Yang and T.-S. Lee, J. Chem. Phys. 103, 5674 (1995).

[940]

T.-S. Lee, D. M. York, and W. Yang, J. Chem. Phys. 105, 2744 (1996).